Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2949results about "Aircraft control" patented technology

Cockpit instrument panel systems and methods with redundant flight data display

Systems and methods are provided for integrated control, access, and presentation of flight information within the cockpit. Cockpit instrument systems and methods are provided which include a first cockpit instrument panel which has a first display proximately located to a first bezel. The first display is operable to present navigational data, communication data, and flight information data including airspeed, attitude, and altitude. The systems and methods further include a second cockpit instrument panel located adjacent to the first cockpit instrument panel. The second cockpit instrument panel has a second display proximately located to a second bezel. The second display is operable to present navigational data, communication data, and flight information data including detailed engine parameters. When either the first or the second cockpit instrument panel fails, the remaining functional, first or second display, is adapted to provide all of the important flight information data, including airspeed, attitude, altitude, and detailed engine parameters.
Owner:GARMIN INT

Unmanned aerial vehicle for monitoring infrastructure assets

An unmanned aerial vehicle and associated methods for inspecting infrastructure assets includes a multirotor, electrically driven helicopter apparatus and power supply; a flight computer; positioning and collision avoidance equipment; and at least one sensor such as a camera. The flight computer is programmed for automated travel to and inspection of selected waypoints, at which condition data is collected for further analysis. The method also includes protocols for segmenting the flight path to accomplish sequential inspection of a linear asset such as a power line using limited-range equipment.
Owner:SOUTHERN ELECTRICAL EQUIP

System and method for enhancing distribution logistics and increasing surveillance ranges with unmanned aerial vehicles and a dock network

A system and method for enhancing distribution logistics and surveillance ranges with unmanned aerial vehicles (UAV) and at least one dock in a dock network. The UAV remains in communication with the dock for enhancing distribution logistics of at least one package and increasing the range of surveillance for the unmanned aerial vehicle. From the dock, the UAV delivers the package to a destination point, obtains the package from a pick up point, recharges the unmanned aerial vehicle throughout the network of docks, and increases the range of distribution and surveillance. A logistics software controls the delivery and surveillance. A wireless communication device enables communication between the UAV and the dock. Light indicators indicate status of the package and the operational status of the UAV. A camera captures an image of the package in the dock. A motion detector detects the UAV for regulating access for loading / unloading and docking.
Owner:DREANO JR FRANK

Launching unmanned aerial copter from mid-air

An unmanned aerial vehicle (UAV) copter for consumer photography or videography can be launched by a user throwing the UAV copter into mid-air. The UAV copter can detect that the UAV copter has been thrown upward while propeller drivers of the UAV copter are inert. In response to detecting that the UAV copter has been thrown upward, the UAV copter can compute power adjustments for propeller drivers of the UAV copter to have the UAV copter reach a predetermined elevation above an operator device. The UAV copter can then supply power to the propeller drivers in accordance with the computed power adjustments.
Owner:LR ACQUISITION LLC

Systems and applications of lighter-than-air (LTA) platforms

Innovative new methods in connection with lighter-than-air (LTA) free floating platforms, of facilitating legal transmitter operation, platform flight termination when appropriate, environmentally acceptable landing, and recovery of these devices are provided. The new systems and methods relate to rise rate control, geo-location from a LTA platform including landed payload and ground-based vehicle locations, and steerable recovery systems.
Owner:SPACE DATA CORP

Method of assistance in the piloting of an aerodyne

The disclosed method is implemented by a system aboard an aerodyne comprising a processor, a terminal and memories in which there are stored all the information necessary for the carrying out of a flight, the system being connected to the other on-board electronic equipment. In order to define a new flight plan to meet a new situation caused by an event, the method comprises: the interpretation of the event to determine the corrective actions to be undertaken given the context in which the aerodyne is located, the analysis of the possibilities of reconfiguring the flight plan that correspond to the corrective actions, according to predetermined and modifiable criteria, the selection of the flight plan solutions that meet the predetermined criteria, and the presenting of these flight plan solutions in association with the significant parameters that have served as the grounds for their selection.
Owner:SEXTANT AVIONIQUE

Alternative method to determine the air mass state of an aircraft and to validate and augment the primary method

A method, apparatus, and computer program product for identifying air data for an aircraft. The lift for the aircraft is identified. The number of surface positions for the aircraft is identified. The angle of attack during flight of the aircraft is identified. A synthetic dynamic pressure is computed from the lift, the number of surface positions, and the angle of attack.
Owner:THE BOEING CO

Aircraft cargo locating system

An aircraft cargo locating system determines the location and weight of aircraft cargo placed in unit loading devices. A wireless tag, such as an Radio Frequency Identification (RFID) tag is affixed to each of the loading devices. The system receives information from the tags, and from the information calculates the location of the loading devices and the weight of the loading devices. The system is able to calculate weight and balance parameters to assist in the loading process.
Owner:THE BF GOODRICH CO

System and Method of Automated Civil Infrastructure Metrology for Inspection, Analysis, and Information Modeling

A system and method of automated civil infrastructure metrology for inspection, analysis, and information modeling utilizes an unmanned aerial vehicle (UAV) equipped with a position tracking system and digital cameras to capture a plurality of images of a structure to be inspected. The UAV is flown in a scan pattern around the structure while continually capturing images of the structure while position and orientation data is also recorded and linked for each of the images. Image processing and pattern recognition software algorithms are used to analyze the images and create an information model of the structure which is then used to carry out a virtual inspection of the structure in a three dimensional software environment.
Owner:SCOTT MICHAEL L

Helicopter Sling-Load Stability Control and Release System

A sling load computer-operated hook assembly for helicopter or unmanned aerial vehicle (UAV) use is provided. The hook assembly allows automated pick-up and delivery. The computer hook assembly also (1) directs navigation of the aircraft, (2) finds and engages loads for pickup, (3) controls stability of the sling load enroute, and (4) releases the load at the delivery point. The self-contained feature allows the hook assembly to be moved from aircraft to aircraft. The hook assembly senses weight, motion and position of the load for stability control. An integral GPS unit is used to direct navigation. These data are transmitted to the aircraft autopilot and flight director instruments to provide navigation to the designated points and to control load stability enroute. Mission data for pick-up and release points can be received remotely from a command and control tactical data net. Alternately, mission data can be locally entered.
Owner:TOLLENAERE DONALD JOHN +1

Lift Propulsion and Stabilizing System and Procedure For Vertical Take-Off and Landing Aircraft

Lift propulsion and stabilizing system and procedure for vertical takeoff and landing aircraft that consists in applying simultaneously and combined as lifters during the initial portion of the climb and at the end of the descent of: a) some fans or electric turbines, EDF, and b) at least one rotor with external blades and / or rotary and / or c) the engine flow directed downwards and / or d) pressure air jets injected on leading edges control fins, and / or e) water jets and / or f) supplemented with aerodynamic lift produced during frontal advance of the aircraft, the stabilization is achieved by the gyroscopic stiffness of the rotor and two or more lifting fans oscillating fins and / or air jets located on two or stabilizers more peripheral points in a plane perpendicular to the vertical axis of the aircraft.
Owner:SAIZ MANUEL M

Drone for inspection of enclosed space and method thereof

Embodiments of a drone for inspection and a method of use are depicted wherein the drone is utilized in an enclosed space and is capable of being controlled with or without line of sight to the aircraft. The drone may land on generally horizontal or vertical surfaces. A method of use is taught as well.
Owner:UNITED DYNAMICS ADVANCED TECH

Gas-powered tip-jet-driven tilt-rotor compound VTOL aircraft

ActiveUS7147182B1Easily take over powering of both rotorLarge thrust augmentation ratioPropellersPump componentsJet engineControl power
A tilt-rotor compound VTOL aircraft has a multiple-flow thrust generator(s) comprising a gas-powered tip-jet driven rotor(s) having a thrust-augmentation ratio of at least two; that tilts about the aircraft's pitch axis wherein the rotor's plane of rotation is substantially horizontal for VTOL operations and the rotor's plane of rotation is substantially vertical forward flight operations. A relatively small fixed-wing sustains the aircraft during forward flight. Compressed exhaust gas from the fan-jet engine(s) is ducted to a manifold having valves which control power to the multiple-flow thrust generator(s) and to the jet exhaust nozzle(s) as supplemental thrust for forward propulsion and yaw control. The manifold also serves to distribute compressed gas to the dead engine side of the aircraft in the event of a dead engine emergency, and to reaction jets for attitude control during VTOL operations. Thus this tilt-rotor aircraft is more efficient, faster, immensely lighter, less complex and less expensive to purchase and maintain than its shaft-driven counterparts.
Owner:FLANIGAN KENNETH WARREN

Systems and applications of lighter-than-air (LTA) platforms

InactiveUS20050014499A1Large costLarge deploymentHydrogenAircraft controlEngineeringFloating platform
Innovative new methods in connection with lighter-than-air (LTA) free floating platforms, of facilitating legal transmitter operation, platform flight termination when appropriate, environmentally acceptable landing, and recovery of these devices are provided. The new systems and methods relate to rise rate control, geo-location from a LTA platform including landed payload and ground-based vehicle locations, and steerable recovery systems.
Owner:SPACE DATA CORP

System, a method and a computer program product for maneuvering of an air vehicle with tiltable propulsion unit

A control system configured to control a deceleration process of an air vehicle which comprises at least one tiltable propulsion unit, each of the at least one tiltable propulsion units is tiltable to provide a thrust whose direction is variable at least between a general vertical thrust vector direction and a general longitudinal thrust vector direction with respect to the air vehicle.
Owner:ISRAEL AEROSPACE IND

Fault-tolerant electromechanical actuator having a torque sensing control system

An electromechanical actuator (EMA) is provided. The EMA includes a threaded output ram connectable to a mechanical component and at least one motor module engageable with the output ram for controllably translating the output ram along a linear axis of the output ram. The actuator further includes a torque sensing adaptive control (TSAC) system for monitoring torque within the motor module. The TSAC generates a disengagement command signal when the TSAC system determines torque within the motor module is outside an allowable motor module torque range. The disengagement command signal initiates disengagement of the motor module from the output ram.
Owner:THE BOEING CO

Aerial image collection

In one embodiment, an aerial collection system includes an image collection field vehicle that travels at street level and an image collection aerial vehicle that travels in the air above the street. The aerial vehicle collects image data including at least a portion of the field vehicle. The field vehicle includes a marker, which is identified from the collected image data. The marker is analyzed to determine an operating characteristic of the aerial vehicle. In one example, the operating characteristic in the marker includes information for a flight instruction for the aerial vehicle. In another example, the operating characteristic in the marker includes information for the three dimensional relationship between the vehicles. The three dimensional relationship is used to combine images collected from the air and images collected from the street level.
Owner:HERE GLOBAL BV

Telescoping wind turbine blade

A wind turbine blade made of a fixed blade section with an integral mounting flange for attachment to a wind turbine hub. A moveable blade section is attached to the fixed blade section and is free to move in a longitudinal direction relative to the fixed blade section. A positioning device controllably positions the moveable blade section to vary the overall length of the blade. This allows the wind turbine's rotor diameter to be adjusted. The rotor diameter can be increased in order to provide high power output in low wind conditions and it can be decreased in order to minimize loads in high wind conditions.
Owner:FRONTIER WIND LLC

Display of altitude and path capture trajectories

Pilot error is reduced and auto pilot operation is improved by the addition of capture information to the information provided on a cockpit display. The capture information, such as, for example, capture start point, last point to initiate capture, trajectory during capture, and capture overshoot region provide information to the pilot regarding the correct initiation of capture. Pilots are therefore better able to evaluate the ongoing performance of the automation or auto pilot systems and to trust that the auto pilot is functioning as desired. Furthermore, the pilot operating the aircraft in manual mode receives guidance based on this information to better know when to initiate capture of the assigned altitude or vertical path.
Owner:HONEYWELL INT INC

Active flow modifications on wind turbine blades

A wind turbine blade is situated on a wind turbine and includes a side and a tip. The blade is configured to rotate about an axis upon an impact of a wind flow on the blade. An active flow modification device is disposed on the blade. The active flow modification device is configured to receive active flow instructions and to modify the wind flow proximate to the blade. The resulting wind turbine blade uses these active flow modifications to achieve reduced loads, reduced aerodynamic losses, reduced noise, enhanced energy capture, or combinations thereof.
Owner:LM WIND POWER US TECH APS

Method and System For Aviation Navigation

InactiveUS20070138345A1Minimizes flight timeFuel consumption is minimizedAircraft controlTarget-seeking controlAviationMarine navigation
A system operates to guide an aircraft to or along a route designed to maintain the aircraft within a safe glide distance of an acceptable emergency landing area. The system uses a database of emergency landing areas with glide characteristics of an aircraft to determine a route that minimizes travel time or other specified parameter, while keeping the aircraft within a safe glide distance of a landing area in the database meeting the landing requirements for the aircraft.
Owner:INTELLECTUAL VENTURES I LLC

Method for Generating Electrical Power Using a Tethered Airborne Power Generation System

A tethered airborne electrical power generation system which may utilize a strutted frame structure with airfoils built into the frame to keep wind turbine driven generators which are within the structure airborne. The primary rotors utilize the prevailing wind to generate rotational velocity. Electrical power generated is returned to ground using a tether that is also adapted to fasten the flying system to the ground. The flying system is adapted to be able to use electrical energy to provide power to the primary turbines which are used as motors to raise the system from the ground, or mounting support, into the air. The system may then be raised into a prevailing wind and use airfoils in the system to provide lift while the system is tethered to the ground. The motors may then resume operation as turbines for electrical power generation. The system may be somewhat planar in that many turbines may have their rotors substantially in one or more planes or planar regions. The system may also be adapted to be assembled of modular components such that a variety of different numbers of turbines may be flown, yet the system may be substantially constructed from multiple similar members.
Owner:BEVIRT JOEBEN

System, method and apparatus for searching geographic area using prioritized spatial order

InactiveUS7363121B1Reduced processing and computation requirementReduce needAircraft controlDigital data processing detailsReference vectorData mining
A spatial data search method, system and apparatus for identifying particular data of significance around a reference vector through the spatial data. The method involves determining a reference vector within a spatial region for which spatial data exists, loading a portion of the spatial data including the data around the reference vector into a memory buffer, and searching the spatial data in a prioritized order. The method, system and apparatus have particular utility in searching geographic data for a terrain awareness and warning system (“TAWS”) and display in an aircraft. Embodiments of the present invention provide advantages over existing sequential and radial search methods, significantly reducing the processing and calculations required and providing faster alerts to pilots.
Owner:GARMIN INT

Rotorcraft control system

A system (100) for controlling a rotorcraft (1) including a rotor (10), at least one variable-pitch propulsion propeller (6L, 6R), and a motor (5) for driving the rotor and the propeller(s), the system includes:a member (101, 101A, 102, 103, 104) for generating a propeller pitch setpoint (θp*+θd*, θp*−θd*) as a function at least of a thrust variation command (TCL);a member (105, 105A) for generating a setpoint (RPM*) for the drive speed (RPM) of the rotor and the propeller(s), as a function at least of the travel speed (VTAS) of the rotorcraft; anda member (106) for generating a setpoint (NG*) for the engine speed as a function at least of the thrust command (TCL), of the drive speed setpoint (PTM*), and of a rotor collective pitch command (θ0).
Owner:EUROCOPTER

Semiautonomous flight director

InactiveUS20020030142A1Reduce a skilled pilots' workloadUnmanned aerial vehiclesActuated automaticallyWorkloadDigital control
A device for programming industry standard autopilots by unskilled pilots. The effect of the invention is such that when the invention is employed in a flying body comprising an industry standard autopilot with a digital flight control system, the invention provides for the safe operation of any aircraft by an unskilled pilot. The device additionally affords skilled pilots a more rapid and simplified means of programming autopilots while in flight thus reducing a skilled pilot's cockpit workload for all aircraft flight and directional steering, way points, and aircraft flight functions reducing the possibility of pilot error so as to effect safer flight operations of an aircraft by affording a skilled pilot to direct aircraft steering and function while under continuous autopilot control.
Owner:JAMES TERRY JACK

Helicopter vibration control system and rotary force generator for canceling vibrations

ActiveUS20060083617A1Reduce periodic vibrationInertia force compensationPropellersVibration controlControl system
A helicopter rotating hub mounted vibration control system for a helicopter rotary wing hub having a periodic vibration while rotating at a helicopter operational rotation frequency. The helicopter rotating hub mounted vibration control system includes an annular ring rotary housing attachable to the helicopter rotary wing hub and rotating with the helicopter rotary wing hub at the helicopter operational rotation frequency. The annular ring housing is centered about the rotary wing hub axis of rotation and has an electronics housing cavity subsystem and preferably an adjacent coaxial rotor housing cavity subsystem. The rotor housing cavity subsystem contains a first coaxial frameless AC ring motor having a first rotor with a first imbalance mass and a second coaxial frameless AC ring motor having a second rotor with a second imbalance mass. The electronics housing cavity subsystem contains an electronics control system which receives sensor outputs and electrically controls and drives the first coaxial frameless AC ring motor and the second coaxial frameless AC ring motor such that the first imbalance mass and the second imbalance mass are directly driven at a vibration canceling rotation frequency greater than the helicopter operational rotation frequency wherein the helicopter rotary wing hub periodic vibration is reduced.
Owner:LORD CORP

Wing leading edge slat system

A mechanism for extending and supporting a high-lift device relative to an airfoil has a pair of support ribs coupled to the airfoil. A carrier track is pivotally coupled to the high-lift device and positioned between the pair of support ribs. The carrier track has a slot opening along a lower length thereof. A gear rack is coupled within the slot opening. A pinion gear is positioned between the support ribs and below the carrier track. The pinion gear engages with the gear rack for extending the high-lift device relative to the airfoil. A plurality of rollers is rotateably coupled to the support ribs and in bearing contact with the carrier track. At least one roller is positioned above the carrier track and a second roller is positioned below the carrier track. The second roller is positioned concentrically with the pinion gear.
Owner:THE BOEING CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products