Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

881 results about "Alternative methods" patented technology

Implantation system for annuloplasty rings

InactiveUS7485142B2Good coaptation of leafletImprove hemodynamic functionSuture equipmentsSurgical needlesEffective lengthShape-memory alloy
Methods for reconfiguring an atrioventricular heart valve that may use systems comprising a partial or complete annuloplasty rings proportioned to reconfigure a heart valve that has become in some way incompetent, a pair of trigonal sutures or implantable anchors, and a plurality of staples which may have pairs of legs that are sized and shaped for association with the ring at spaced locations along its length. These systems permit relative axial movement between the staples and the ring, whereby a patient's heart valve can be reconfigured in a manner that does not deter subtle shifting of the native valve components. Shape-memory alloy material staples may have legs with free ends that interlock following implantation. Annuloplasty rings may be complete or partial and may be fenestrated. One alternative method routes a flexible wire, preferably of shape-memory material, through the bights of pre-implanted staples. Other alternative systems use linkers of shape-memory material having hooked ends to interengage with staples or other implanted supports which, following implantation, decrease in effective length and pull the staples or other supports toward one another so as to create desired curvature of the reconfigured valve. These linkers may be separate from the supports or may be integral with them and may have a variety of shapes and forms. Various of these systems may be implanted non-invasively using a delivery catheter.
Owner:QUICKRING MEDICAL TECH LTD

Systems and methods for spinal fixation

Featured are a method and apparatus for fixing adjacent vertebrate of a spine that avoids the need and associated problems with prior cage or straight rod and screw systems. Methods and apparatus of the invention utilize a new implant member, which preferably is arcuate. Preferred methods of the invention for stabilizing adjacent vertebrae of the spine, include steps of providing a positioning apparatus including two guide sleeves, each guide sleeve having a long axis and locating the two guide sleeves with respect to the adjacent vertebrae such that a vertex formed by the long axis of each guide sleeve is located in the intervertebral space for the adjacent vertebrae. The method further includes forming an aperture in each of the adjacent vertebrae using the guide sleeves and inserting an implant into the apertures formed in each of the adjacent vertebrae so that the implant extends between the adjacent vertebrae and through the intervertebral space. In an alternative method a cutting fixture including a pivot arm is secured to the adjacent vertebrae and a cutting device is secured to the pivot arm. The pivot arm and cutting device are configured and arranged so that rotation of the pivot arm about a particularly located pivot point allows the cutting device to form the aperture in each of the adjacent vertebrae. Another alternative method for fixing adjacent vertebrate of a spine includes the step of forming a common channel in and between the adjacent vertebrae and inserting a biscuit implant in the common so as to bridge between the adjacent vertebrae.
Owner:K2M

Wireless communication device with multiple external communication links

A decentralized asynchronous wireless communication system is disclosed for providing voice and data communication that allows flexibility of communication paths for local communication or for communication to external networks. The system makes use of communication docking bays that may communicate in a local mode with other communication docking bays or handsets within a same microcell via signal extenders. In an extended mode, a communication docking bay located in a first microcell of a first macrocell may communicate with a second communication docking bay or handset in a second microcell of the first macrocell via signal extenders and a network extender. In a remote mode, a communication docking bay located in a first microcell of a first macrocell may communicate with a second communication docking bay or handset in a second microcell of a second macrocell via signal extenders and network extenders. The communication docking bays also provide a communication path to a Public Switch Telephone Network and other communication medium. This feature provides an alternate means of connecting a mobile handset to a Public Switch Telephone Network without communicating through a network extender. The system is particularly suitable for operation in rural areas having a low population density.
Owner:WAHOO COMM CORP

Forming an optical element on the surface of a light emitting device for improved light extraction

Provided is a light emitting device including a Fresnel lens and / or a holographic diffuser formed on a surface of a semiconductor light emitter for improved light extraction, and a method for forming such light emitting device. Also provided is a light emitting device including an optical element stamped on a surface for improved light extraction and the stamping method used to form such device. An optical element formed on the surface of a semiconductor light emitter reduces reflective loss and loss due to total internal reflection, thereby improving light extraction efficiency. A Fresnel lens or a holographic diffuser may be formed on a surface by wet chemical etching or dry etching techniques, such as plasma etching, reactive ion etching, and chemically-assisted ion beam etching, optionally in conjunction with a lithographic technique. In addition, a Fresnel lens or a holographic diffuser may be milled, scribed, or ablated into the surface. Stamping, an alternative method for forming an optical element, can also be used to form a Fresnel lens or a holographic diffuser on the surface of a semiconductor light emitter. Stamping includes pressing a stamping block against the surface of a light emitting diode. The stamping block has a shape and pattern that are the inverse of the desired optical element. Optionally, stamping can be done before, after, or concurrently with wafer-bonding. Alternatively, a material can be stamped and later bonded to the semiconductor light emitter.
Owner:LUMILEDS

Forming an optical element on the surface of a light emitting device for improved light extraction

Provided is a light emitting device including a Fresnel lens and / or a holographic diffuser formed on a surface of a semiconductor light emitter for improved light extraction, and a method for forming such light emitting device. Also provided is a light emitting device including an optical element stamped on a surface for improved light extraction and the stamping method used to form such device. An optical element formed on the surface of a semiconductor light emitter reduces reflective loss and loss due to total internal reflection, thereby improving light extraction efficiency. A Fresnel lens or a holographic diffuser may be formed on a surface by wet chemical etching or dry etching techniques, such as plasma etching, reactive ion etching, and chemically-assisted ion beam etching, optionally in conjunction with a lithographic technique. In addition, a Fresnel lens or a holographic diffuser may be milled, scribed, or ablated into the surface. Stamping, an alternative method for forming an optical element, can also be used to form a Fresnel lens or a holographic diffuser on the surface of a semiconductor light emitter. Stamping includes pressing a stamping block against the surface of a light emitting diode. The stamping block has a shape and pattern that are the inverse of the desired optical element. Optionally, stamping can be done before, after, or concurrently with wafer-bonding. Alternatively, a material can be stamped and later bonded to the semiconductor light emitter.
Owner:LUMILEDS

Maximum likelihood decoding

A method of maximum likelihood decoding for detecting the signals transmitted over a Multiple-Input-Multiple-Output (MIMO) channel of a communication system in which there are N co-channel transmit antennas and M co-channel receive antennas. In a first method an orthotope (22) is generated in input signal space centred on an approximate transmit signal point τ which is an inverse mapping from an actual received signal point (y) in output signal space. Only possible transmit points located within the orthotope are considered as candidate points and are transformed into corresponding candidate receive signal points in output signal space. The Euclidean distance between the candidate receive signal points and the actual signal point is calculated and the closest candidate receive signal is selected as the detected received point. In an alternative method, the orthotope is constructed as the smallest such orthotope which can contain a hyperellipsoid (20) in input signal space, which hyperellipsoid is a transformation from output signal space of a hypersphere (18) centred on the actual received signal point (y). Those transmit signal points which lie within the orthotope (22) but outside of the ellipsoid (20) are discarded and the remaining points within the orthotope are considered as candidate points, in the same way as described above.
Owner:APPLE INC

Production of potable water and freshwater needs for human, animal and plants from hot and humid air

InactiveUS6868690B2Reduces cargo spaceMinimize any benefitGeneral water supply conservationSeawater treatmentParticulatesFresh water organism
Systems and methods are disclosed for extracting freshwater from atmospheric humidity in extremely hot and humid climates and supplying freshwater to a small group of people, a building, a farm, or forestation area. The freshwater is treated to provide drinking water by disinfecting to eliminate microorganisms and filtration to remove suspended particulates from air, erosion or corrosion products, and disinfected waste. Compact units provide drinking water for individuals, passengers in cars, vans, trucks, or recreational boats, or crewmembers on a seagoing cargo ship whether from atmospheric humidity or from moisture-laden gases. Furthermore, systems are disclosed for the ample supply of freshwater with minimal treatment for small- to large-sized buildings in a manner that alleviates the heat load on buildings. Collection of freshwater from hot humid ambient air is also provided for other uses, such as irrigation and farm animal drinking. Various methods are used for condensation of water vapor suspended in the air as alternative to conventional refrigeration cycles using CFC refrigerants. Devices are disclosed using naturally occurring brackish cold water, circulation of cooling water cooled by thermoelectric cooling or thermoacoustic refrigeration as well as evaporative cooling and transpiration cooling. Water produced by the systems may flow under gravitational forces entirely or with the assistance of boasting pumps.
Owner:FAKIEH RES & DEV CENT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products