Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4756results about "Acquiring/recognising eyes" patented technology

Headset-Based Telecommunications Platform

A hands-free wireless wearable GPS enabled video camera and audio-video communications headset, mobile phone and personal media player, capable of real-time two-way and multi-feed wireless voice, data and audio-video streaming, telecommunications, and teleconferencing, coordinated applications, and shared functionality between one or more wirelessly networked headsets or other paired or networked wired or wireless devices and optimized device and data management over multiple wired and wireless network connections. The headset can operate in concert with one or more wired or wireless devices as a paired accessory, as an autonomous hands-free wide area, metro or local area and personal area wireless audio-video communications and multimedia device and / or as a wearable docking station, hot spot and wireless router supporting direct connect multi-device ad-hoc virtual private networking (VPN). The headset has built-in intelligence to choose amongst available network protocols while supporting a variety of onboard, and remote operational controls including a retractable monocular viewfinder display for real time hands-free viewing of captured or received video feed and a duplex data-streaming platform supporting multi-channel communications and optimized data management within the device, within a managed or autonomous federation of devices or other peer-to-peer network configuration.
Owner:EYECAM INC

Method and apparatus for calibration-free eye tracking

A system and method for eye gaze tracking in human or animal subjects without calibration of cameras, specific measurements of eye geometries or the tracking of a cursor image on a screen by the subject through a known trajectory. The preferred embodiment includes one uncalibrated camera for acquiring video images of the subject's eye(s) and optionally having an on-axis illuminator, and a surface, object, or visual scene with embedded off-axis illuminator markers. The off-axis markers are reflected on the corneal surface of the subject's eyes as glints. The glints indicate the distance between the point of gaze in the surface, object, or visual scene and the corresponding marker on the surface, object, or visual scene. The marker that causes a glint to appear in the center of the subject's pupil is determined to be located on the line of regard of the subject's eye, and to intersect with the point of gaze. Point of gaze on the surface, object, or visual scene is calculated as follows. First, by determining which marker glints, as provided by the corneal reflections of the markers, are closest to the center of the pupil in either or both of the subject's eyes. This subset of glints forms a region of interest (ROI). Second, by determining the gaze vector (relative angular or Cartesian distance to the pupil center) for each of the glints in the ROI. Third, by relating each glint in the ROI to the location or identification (ID) of a corresponding marker on the surface, object, or visual scene observed by the eyes. Fourth, by interpolating the known locations of each these markers on the surface, object, or visual scene, according to the relative angular distance of their corresponding glints to the pupil center.
Owner:CHENG DANIEL +3

Method and apparatus for calibration-free eye tracking using multiple glints or surface reflections

A system and method for eye gaze tracking in human or animal subjects without calibration of cameras, specific measurements of eye geometries or the tracking of a cursor image on a screen by the subject through a known trajectory. The preferred embodiment includes one uncalibrated camera for acquiring video images of the subject's eye(s) and optionally having an on-axis illuminator, and a surface, object, or visual scene with embedded off-axis illuminator markers. The off-axis markers are reflected on the corneal surface of the subject's eyes as glints. The glints indicate the distance between the point of gaze in the surface, object, or visual scene and the corresponding marker on the surface, object, or visual scene. The marker that causes a glint to appear in the center of the subject's pupil is determined to be located on the line of regard of the subject's eye, and to intersect with the point of gaze. Point of gaze on the surface, object, or visual scene is calculated as follows. First, by determining which marker glints, as provided by the corneal reflections of the markers, are closest to the center of the pupil in either or both of the subject's eyes. This subset of glints forms a region of interest (ROI). Second, by determining the gaze vector (relative angular or cartesian distance to the pupil center) for each of the glints in the ROI. Third, by relating each glint in the ROI to the location or identification (ID) of a corresponding marker on the surface, object, or visual scene observed by the eyes. Fourth, by interpolating the known locations of each these markers on the surface, object, or visual scene, according to the relative angular distance of their corresponding glints to the pupil center.
Owner:CHENG DANIEL +3
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products