Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

7130results about How to "Improve transmittance" patented technology

Touch panel having press detection function and pressure sensitive sensor for the touch panel

An object of the present invention is to provide a touch panel having a press detection function, which makes it possible to suppress degradation of visibility of a display unit of a display device even when mounted on an electronic device, and also to improve a pressure measuring precision. For this purpose, the touch panel of the present invention includes a first substrate, a second substrate disposed oppose to the first substrate, a pair of electrodes disposed on either one of opposed surfaces of the respective substrates or disposed separately on both of the surfaces, pressure sensitive ink members disposed with a gap from at least one of the pair of electrodes, each of the pressure sensitive ink members having an electrical characteristic varied by a pressing force applied thereto, and a gap retaining member for bonding the first and second substrates to each other and for retaining a gap between each of the pressure sensitive inks and at least one of the pair of electrodes, wherein the pair of electrodes are disposed in a frame shape along an edge portion of the first or second substrate, and the pressure sensitive ink members are scattered along the edge portion of the first or second substrate so that, when the first or second substrate is deformed upon an application of an external force, at least one of them is made in contact with both of the pair of electrodes so as to make the two electrodes conductive to each other.
Owner:NISSHA PRINTING COMPANY

Intermediate film for laminated glass and laminated glass

The object of the present invention is to provide an interlayer film for laminated glass which exerts excellent heat insulation or electromagnetic wave transmittance and which is suitable for producing a laminated glass having excellent fundamental performance characteristics required for the laminated glass, such as transparency, especially good haze, appropriate bond strength between an interlayer film and glass, penetration resistance, impact absorption, weather resistance, and so on. Also, the object of the present invention is to provide a laminated glass produced by using the above-mentioned interlayer film. These objects are realized by the interlayer film for laminated glass comprising an adhesive resin, wherein the average particle diameter of tin-doped indium oxide and/or antimony-doped tin oxide is ranging from 0 to 80 nm, and the number of the tin-doped indium oxide or antimony-doped tin oxide particles with a particle diameter of not less than 100 nm are dispersed not more than 1 per 1 mum<2>, and also, by a laminated glass produced by interposing said interlayer film for laminated glass between at least a pair of glass sheets having a visible light transmittance rate (Tv) of not less than 65% in the light rays of 380 to 780 nm, a solar radiation transmittance rate (Ts) in the light rays of 300 to 2500 nm of not more than 80% of the mentioned visible light transmittance rate (Tv), the haze value (H) of up to 1.0% and electromagnetic wave shield (DeltadB) of not more than 11 dB in the wavelength of 10 to 2000 MHz.
Owner:SEKISUI CHEM CO LTD

Conductive particle, visible light transmissive particle dispersed conductor, method for producing same, transparent conductive thin film, method for producing same, transparent conductive article using same, and infrared shielding article

An object of the present invention is to provide an infrared-shielding nanoparticle dispersion that has a property whereby visible light is adequately transmitted, and light in the near-infrared region is adequately shielded; an infrared-shielding body manufactured using the infrared-shielding nanoparticle dispersion; a method for manufacturing infrared-shielding nanoparticles that are used in the infrared-shielding nanoparticle dispersion; and infrared-shielding nanoparticles manufactured using the method for manufacturing infrared-shielding nanoparticles. The present invention is a method for manufacturing infrared-shielding nanoparticle dispersion obtained by dispersing infrared-shielding nanoparticles in a medium, an infrared-shielding body manufactured by using the infrared-shielding nanoparticle dispersion, and infrared-shielding nanoparticles used in the infrared-shielding nanoparticle dispersion, wherein the infrared-shielding nanoparticles include a substance expressed by the general formula MXAYW(1-Y)O3 (where M is one or more elements selected from H, He, alkali metals, alkaline-earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I; A is one or more elements selected from Mo, Nb, Ta, Mn, V, Re, Pt, Pd, and Ti; W is tungsten; O is oxygen; 0<X≦1.2; 0<Y≦1).
Owner:SUMITOMO METAL MINING CO LTD

Touch panel having press detection function and pressure sensitive sensor for the touch panel

An object of the present invention is to provide a touch panel having a press detection function, which makes it possible to suppress degradation of visibility of a display unit of a display device even when mounted on an electronic device, and also to improve a pressure measuring precision. For this purpose, the touch panel of the present invention includes a first substrate, a second substrate disposed oppose to the first substrate, a pair of electrodes disposed on either one of opposed surfaces of the respective substrates or disposed separately on both of the surfaces, pressure sensitive ink members disposed with a gap from at least one of the pair of electrodes, each of the pressure sensitive ink members having an electrical characteristic varied by a pressing force applied thereto, and a gap retaining member for bonding the first and second substrates to each other and for retaining a gap between each of the pressure sensitive inks and at least one of the pair of electrodes, wherein the pair of electrodes are disposed in a frame shape along an edge portion of the first or second substrate, and the pressure sensitive ink members are scattered along the edge portion of the first or second substrate so that, when the first or second substrate is deformed upon an application of an external force, at least one of them is made in contact with both of the pair of electrodes so as to make the two electrodes conductive to each other.
Owner:NISSHA PRINTING COMPANY

Active matrix displays having high contrast values

An active matrix display comprises a chiral smectic liquid crystal mixture which has the phase sequence I-N*-SmC*, a spontaneous polarization in the operating temperature range of <40 nC/cm2 and a pitch of >10 mum at at least one temperature in the nematic or cholesteric phase and comprises at least one compound each from at least two of the substance classes (A), (B) and (C) and one or more compounds from substance class (D):(A): compounds comprising two rings which are directly linked to one another and are selected from phenylene-1,4-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl and pyridazine-2,5-diyl with the proviso that at least one of these rings is a nitrogen heterocycle;(B): compounds comprising three rings selected from phenylene-1,4-diyl, two of the rings being directly linked to one another and the third ring being linked to one of the other two rings via an -OC(=O)- or -C(=O)-group, with the proviso that at least one of the three rings is fluorophenylene-1,4-diyl or ortho-difluorophenylene-1,4-diyl;(C): compounds comprising three rings which are directly linked to one another and are selected from phenylene-1,4-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl and pyridazine-2,5-diyl with the proviso that at least one of these rings is a nitrogen heterocycle;(D): compounds comprising mesogenic groups suitable as components of liquid crystal mixtures.
Owner:MERCK PATENT GMBH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products