Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3445 results about "Metamaterial" patented technology

A metamaterial (from the Greek word μετά meta, meaning "beyond" and the Latin word materia, meaning "matter" or "material") is a material engineered to have a property that is not found in naturally occurring materials. They are made from assemblies of multiple elements fashioned from composite materials such as metals and plastics. The materials are usually arranged in repeating patterns, at scales that are smaller than the wavelengths of the phenomena they influence. Metamaterials derive their properties not from the properties of the base materials, but from their newly designed structures. Their precise shape, geometry, size, orientation and arrangement gives them their smart properties capable of manipulating electromagnetic waves: by blocking, absorbing, enhancing, or bending waves, to achieve benefits that go beyond what is possible with conventional materials.

Encoded information reading terminal with micro-electromechanical radio frequency front end

An encoded information reading (EIR) terminal can comprise a microprocessor electrically coupled to a system / data bus, a memory communicatively coupled to the microprocessor, an EIR device, a multi-band antenna, and a wireless communication interface. The EIR device can be provided by a bar code reading device, an RFID reading device, or a card reading device. The EIR device can be configured to output raw message data containing an encoded message and / or output decoded message data corresponding to an encoded message. The wireless communication interface can comprise a radio frequency (RF) front end electrically coupled to the multi-band antenna. The RF front end can comprise a micro-electromechanical (MEMS) filter array including one or more band-pass filter. Each band-pass filter of the MEMS filter array can be electrically coupled to a bias voltage source or an oscillating signal source. The RF front end can be electrically coupled to an analog-to-digital (A / D) converter and / or to a digital-to-analog (D / A) converter. The wireless communication interface can be configured to transmit radio signals in two or more frequency regulatory domains and / or receive radio signals in two or more frequency regulatory domains. The multi-band antenna can in one embodiment be provided by a meta-material antenna.
Owner:HAND HELD PRODS

Ceramic antenna module and methods of manufacture thereof

ActiveUS20060092079A1Minimize reflection lossWithout adversely impacting radiation efficiencySimultaneous aerial operationsSolid-state devicesRF front endPermittivity
Circuit modules and methods of construction thereof that contain composite meta-material dielectric bodies that have high effective values of real permittivity but which minimize reflective losses, through the use of host dielectric (organic or ceramic), materials having relative permittivities substantially less than ceramic dielectric inclusions embedded therein. The composite meta-material bodies permit reductions in physical lengths of electrically conducting elements such as antenna element(s) without adversely impacting radiation efficiency. The meta-material structure may additionally provide frequency band filtering functions that would normally be provided by other components typically found in an RF front-end.
Owner:DE ROCHEMONT L PIERRE

Phased array metamaterial antenna system

An efficient, low-loss, low sidelobe, high dynamic range phased-array radar antenna system is disclosed that uses metamaterials, which are manmade composite materials having a negative index of refraction, to create a biconcave lens architecture (instead of the aforementioned biconvex lens) for focusing the microwaves transmitted by the antenna. Accordingly, the sidelobes of the antenna are reduced. Attenuation across microstrip transmission lines may be reduced by using low loss transmission lines that are suspended above a ground plane a predetermined distance in a way such they are not in contact with a solid substrate. By suspending the microstrip transmission lines in this manner, dielectric signal loss is reduced significantly, thus resulting in a less-attenuated signal at its destination.
Owner:LUCENT TECH INC

Ultra-wide band (UWB) artificial magnetic conductor (AMC) metamaterials for electrically thin antennas and arrays

This disclosure demonstrates a new class of Ultra-Wide Band (UWB) AMC with very large fractional bandwidth (>100%) even at lower frequencies (<1 GHz). This new UWB AMC is enabled by recognizing that any AMC must be an antenna in order to accept the incident radiation into the circuit. Therefore, by using UWB antenna design features, one can make wide band AMCs. Additionally, by manipulation of the UWB AMC element design, a 1 / frequency dependence can be obtained for instantiating the benefits of a quarter wave reflection over a large UWB bandwidth with a single physical thickness.
Owner:FLUHLER HERBERT U

Metamaterial scanning lens antenna systems and methods

The present invention is directed to systems and methods for radiating radar signals, communication signals, or other similar signals. In one embodiment, a system includes a controller that generates a control signal and an antenna coupled to the controller. The antenna includes a first component that generates at least one wave based on the generated control signal and a metamaterial lens positioned at some predefined focal length from the first component. The metamaterial lens directs the generated at least one wave.
Owner:THE BOEING CO

Metamaterial gradient index lens

Examples of the present invention include a gradient index element formed from a material such as a metamaterial, the material having an index profile and an index gradient profile, where the index profile includes at least one discontinuity and the index gradient profile is substantially continuous.
Owner:TOYOTA MOTOR CO LTD

Metamaterial gradient index lens

Examples of the present invention include a gradient index element formed from a material such as a metamaterial, the material having an index profile and an index gradient profile, where the index profile includes at least one discontinuity and the index gradient profile is substantially continuous.
Owner:TOYOTA MOTOR CO LTD

Phased array metamaterial antenna system

An efficient, low-loss, low sidelobe, high dynamic range phased-array radar antenna system is disclosed that uses metamaterials, which are manmade composite materials having a negative index of refraction, to create a biconcave lens architecture (instead of the aforementioned biconvex lens) for focusing the microwaves transmitted by the antenna. Accordingly, the sidelobes of the antenna are reduced. Attenuation across microstrip transmission lines may be reduced by using low loss transmission lines that are suspended above a ground plane a predetermined distance in a way such they are not in contact with a solid substrate. By suspending the microstrip transmission lines in this manner, dielectric signal loss is reduced significantly, thus resulting in a less-attenuated signal at its destination.
Owner:LUCENT TECH INC

Active terahertz metamaterial devices

Metamaterial structures are taught which provide for the modulation of terahertz frequency signals. Each element within an array of metamaterial (MM) elements comprises multiple loops and at least one gap. The MM elements may comprise resonators with conductive loops and insulated gaps, or the inverse in which insulated loops are present with conductive gaps; each providing useful transmissive control properties. The metamaterial elements are fabricated on a semiconducting substrate configured with a means of enhancing or depleting electrons from near the gaps of the MM elements. An on to off transmissivity ratio of about 0.5 is achieved with this approach. Embodiments are described in which the MM elements incorporated within a Quantum Cascade Laser (QCL) to provide surface emitting (SE) properties.
Owner:NAT TECH & ENG SOLUTIONS OF SANDIA LLC

Chiral Metamaterials

A metamaterial includes a dielectric substrate and an array of discrete resonators at the dielectric substrate, wherein each of the discrete resonators has a shape that is independently selected from: an F-type shape; an E-type shape; or a y-type shape. A parameter of a chiral metamaterial is determined and a chiral metamaterial having such a parameter is prepared by the use of a model of the chiral metamaterial. The metamaterial model includes an array of discrete resonators. In one embodiment, each of the discrete resonators has a shape that is independently selected from the group consisting of: an F-type shape; an E-type shape; and a y-type shape. To the metamaterial model, electromagnetic (EM) radiation, preferably plane-polarized EM radiation in a visible, ultraviolet or near-infrared region, having at least one wavelength that is larger than the largest dimension of at least resonator of the metamaterial model, is applied. Varying at least one characteristic of the metamaterial model and / or at least one wavelength of the applied EM radiation modulates EM interaction of the applied EM radiation with the metamaterial model, thereby determining a parameter of the chiral metamaterial. By the use of a model of the chiral metamaterial, a number of discrete resonators of a chiral metamaterial that are arrayed in a direction perpendicular to a propagation axis of EM radiation is also determined.
Owner:UNIVERSITY OF MASSACHUSETTS LOWELL

Active radar system

An example radar system for a vehicle comprises a radar antenna, operable to produce a radar beam, and a lens assembly including at least one active lens, the radar beam passing through the lens assembly. The radar beam has a field of view that is adjustable using the active lens. In some examples, the active lens comprises a metamaterial, the metamaterial having an adjustable property such as an adjustable negative index, the field of view being adjustable using the adjustable property of the metamaterial.
Owner:TOYOTA MOTOR CO LTD

Efficient metamaterial-inspired electrically-small antenna

Planar (two-dimensional) and volumetric (three-dimensional), metamaterial-inspired, efficient electrically-small antennas. The electric-based and magnetic-based antenna systems are shown to be naturally matched to a source and are linearly scalable to a wide range of frequencies. The systems include a radiating element that is fed by the source through a finite ground plane via a feedline and an electrically-small, one-unit cell made of a metamaterial that is adapted to match the input impedance of the antenna.
Owner:THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIV OF ARIZONA

Intelligent self-organizing electrode stimulation delivery system

An electrode stimulation delivery system is described having a unit and a network of wireless remote electrodes configured for implantation within a plurality of spaced apart locations in the tissue, e.g. myocardium, of a patient. The control unit is configured to be positioned at or subcutaneous to the patient's skin, and includes a processor, an antenna configured for delivering RF energy in proximity to the plurality of wireless remote electrodes, and programming executable on the processor for wirelessly communicating to the network of wireless remote electrodes via the delivered RF energy to individually control pacing of the plurality of wireless remote electrodes. Each of the plurality of wireless remote electrodes comprises a metamaterial-based biomimetic harvesting antenna comprising a Van Atta array zero-phase transmission lines to receive the RF energy to power activation of the plurality of wireless remote electrodes.
Owner:NORTH DAKOTA STATE UNIV RES FOUND +1

Metamaterial lens feed for multiple beam antennas

ActiveUS20110095953A1Reduce mutual couplingIncreased effective feed horn apertureAntennasRefractive indexLight beam
A multiple beam reflector antenna includes at least one reflector, a plurality of feed horns for feeding the at least one reflector, and a metamaterial lens interposed between the plurality of feed horns and the at least one reflector. The metamaterial lens may provide an overlapping element distribution from at least two feed horns of the plurality of feed horns. In one embodiment, the metamaterial lens has an index of refraction between about zero and about one.
Owner:LOCKHEED MARTIN CORP

Graphene transistor based on metamaterial structure, optical sensor based on metamaterial structure, and application of graphene transistor

Disclosed are a graphene transistor based on a metamaterial structure, an optical sensor based on a metamaterial structure, and application of the graphene transistor. The graphene transistor sequentially comprises a liner, a grid metal layer, a grid medium layer, a grapheme layer and a source and drain metal layer from bottom to top. At least local area of the source and drain metal layer is provided with a periodicity micro-nano structure. The periodicity micro-nano structure, the grid metal layer and the grid medium layer match to form the metamaterial structure with the feature of complete absorption. By changing refractive index, thickness and the like of the periodicity micro-nano structure and the grid medium layer material, optical absorption frequency range of the metamaterial structure can be adjusted. Due to the feature of perfect wavelength selectivity absorption, higher flexibility and narrow-band response of the metamaterial structure, the graphene transistor can work under visible light to infrared even longer wave bands by selecting different metamaterial structures. By integrating optical sensor working in different wave bands, image sensors, spectrum detecting analyzing device and the like which can work in ultra-wide bands can be formed.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI

Resolution antenna array using metamaterials

An antenna array includes at least one transmit array comprising a plurality of metamaterial elements. The antenna array further includes at least one near-field stimulator for inputting electromagnetic signal to the transmit array so that a sub-wavelength target is illuminated with an electromagnetic wave.
Owner:NORTHROP GRUMMAN SYST CORP

Phononic metamaterials for vibration isolation and focusing of elastic waves

A methodology for designing structured metamaterials that can reflect, absorb and focus the propagation of both scalar acoustic and vector elastic waves is described. Three exemplary representative inventions based on the disclosed invention are described, illustrating i) compact ultra-wide broadband isolation, ii) sub-wavelength gaps and negative index propagation utilizing a single material platform, and iii) a fundamentally new method of producing multiple high frequency spectral gaps. Such metamaterial designs possess a wide range of potential applications, ranging from but not limited to, isolating an entity from external mechanical or acoustical vibrations, compact focusing lenses as well as cascaded high frequency filters for wave shaping and nonlinear wave propagation control.
Owner:MASSACHUSETTS INST OF TECH

Fabrication of metamaterials

An example method of fabricating a metamaterial comprises providing a first metamaterial layer, the first metamaterial layer including a first plurality of conducting patterns, such as electrically coupled resonators. A second metamaterial layer is then formed, including a second plurality of conducting patterns, to form a multilayer metamaterial. Positional alignment of the first and second plurality of conducting patterns can be achieved relative to the same fiducial mark, which may be associated with the first metamaterial layer, for example supported by a first substrate or on an alignment layer that is attached to the first substrate.
Owner:TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA +1

Method for reducing electromagnetic field of terminal and terminal having structure for reducing electromagnetic field

A method of reducing electromagnetic field using metamaterial and a terminal having a structure for reducing an electromagnetic field using a metamaterial are provided. The method includes the steps of: deciding a body contacting part of a portable terminal or a wearable terminal; and disposing an electromagnetic field absorption member formed of metamaterial between an antenna and the decided body contacting part.
Owner:ELECTRONICS & TELECOMM RES INST

Index tuned antireflective coating using a nanostructured metamaterial

An anti-reflective layer solar cell / optical medium is provided by nanostructuring the surface of the optical material into which light transmission is desired. The surface of the optical material is etched through a nanoporous polymer film etch mask to transfer the porous pattern to the optical material. The resultant nanostructured layer is an optical metamaterial since it contains structural features much smaller than the wavelength of light and the presence of these structural features change the effective index of refraction by controlling the degree of porosity in the nanostructured layer and also by controlling the thickness of the porous layer.
Owner:MASSACHUSETTS UNIV OF

Phononic metamaterials for vibration isolation and focusing of elastic waves

A methodology for designing structured metamaterials that can reflect, absorb and focus the propagation of both scalar acoustic and vector elastic waves is described. Three exemplary representative inventions based on the disclosed invention are described, illustrating i) compact ultra-wide broadband isolation, ii) sub-wavelength gaps and negative index propagation utilizing a single material platform, and iii) a fundamentally new method of producing multiple high frequency spectral gaps. Such metamaterial designs possess a wide range of potential applications, ranging from but not limited to, isolating an entity from external mechanical or acoustical vibrations, compact focusing lenses as well as cascaded high frequency filters for wave shaping and nonlinear wave propagation control.
Owner:MASSACHUSETTS INST OF TECH

Radio communication system

A radio communication system according to the present invention includes a scatterer configured to reflect, refract, or transmit a radio wave radiated primarily from a transmission side apparatus to radiate the radio wave secondarily to a desired area and a metamaterial is used for the scatterer.
Owner:NTT DOCOMO INC

Optical material, optical device fabricated therefrom, and method for fabricating the same

In order to make a reflection coefficient in boundary surface between materials to be zero and permeate 100% of a light independent of a polarization direction, an optical device made of an optical material composed of a metamaterial prepared by arranging a plurality of at least either of electrical resonators or magnetic resonators each being smaller than a wavelength of a light wave in only a predetermined plane, and at least either of the electrical resonators and the magnetic resonators arranged functioning with respect to s-polarization, whereby at least either of the dielectric constant or the magnetic permeability is controlled in response to the function to induce a Brewster phenomenon in the s-polarization wherein the incident plane of a light wave being set out at a Brewster's angle with respect to the p-polarization and further at least either of the dielectric constant and the magnetic permeability of the optical material being controlled with respect to the s-polarization of the optical material, whereby the Brewster condition is independently satisfied in both the p-polarization and the s-polarization at the same time.
Owner:RIKEN

Wide Angle Impedance Matching Using Metamaterials in a Phased Array Antenna System

A phased array antenna system may include a sheet of conductive material with a plurality of aperture antenna elements formed in the sheet of conductive material. Each of the plurality of aperture antenna elements is capable of sending and receiving electromagnetic energy. The phased array antenna system may also include a wide angle impedance match (WAIM) layer of material disposed over the plurality of aperture antenna elements formed in the sheet of conductive material. The WAIM layer of material includes a plurality of metamaterial particles. The plurality of metamaterial particles are selected and arranged to minimize return loss and to optimize an impedance match between the phased array antenna system and free space to permit scanning of the phased array antenna system up to a predetermined angle in elevation.
Owner:THE BOEING CO

Distributing clock signals using metamaterial-based waveguides

Various embodiments of the present invention are directed to global interconnects that employ metamaterial-based waveguides to distribute clock signals to IC internal components. In one embodiment of the present invention, a global interconnect includes an electromagnetic radiation source that radiates electromagnetic waves. The global interconnect also includes a metamaterial-based waveguide that directs a transverse magnetic field mode of the electromagnetic wave to antennae of the internal components in order to induce an oscillating current within the internal components that serves as the clock signal.
Owner:HEWLETT-PACKARD ENTERPRISE DEV LP

Antenna having metamaterial superstrate and providing gain improvement and beamforming together

Provided is antenna having metamaterial and providing gain improvement and beamforming together. The antenna includes a resonator and a superstrate. A feed antenna is disposed in the resonator. The superstrate includes a conductive pattern on the resonator for improving gain and beamforming of the feed antenna.
Owner:ELECTRONICS & TELECOMM RES INST

Metamaterial scanning lens antenna systems and methods

InactiveUS20060028385A1Negative index of refractionSolve the power is smallAntennasControl signalRadar signals
The present invention is directed to systems and methods for radiating radar signals, communication signals, or other similar signals. In one embodiment, a system includes a controller that generates a control signal and an antenna coupled to the controller. The antenna includes a first component that generates at least one wave based on the generated control signal and a metamaterial lens positioned at some predefined focal length from the first component. The metamaterial lens directs the generated at least one wave.
Owner:THE BOEING CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products