Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

801results about "Computations using contact-making devices" patented technology

Encoded information reading terminal with micro-electromechanical radio frequency front end

An encoded information reading (EIR) terminal can comprise a microprocessor electrically coupled to a system / data bus, a memory communicatively coupled to the microprocessor, an EIR device, a multi-band antenna, and a wireless communication interface. The EIR device can be provided by a bar code reading device, an RFID reading device, or a card reading device. The EIR device can be configured to output raw message data containing an encoded message and / or output decoded message data corresponding to an encoded message. The wireless communication interface can comprise a radio frequency (RF) front end electrically coupled to the multi-band antenna. The RF front end can comprise a micro-electromechanical (MEMS) filter array including one or more band-pass filter. Each band-pass filter of the MEMS filter array can be electrically coupled to a bias voltage source or an oscillating signal source. The RF front end can be electrically coupled to an analog-to-digital (A / D) converter and / or to a digital-to-analog (D / A) converter. The wireless communication interface can be configured to transmit radio signals in two or more frequency regulatory domains and / or receive radio signals in two or more frequency regulatory domains. The multi-band antenna can in one embodiment be provided by a meta-material antenna.
Owner:HAND HELD PRODS

Quotient digit selection logic for floating point division/square root

Quotient digit selection logic using a three-bit carry propagate adder is presented. An enhanced quotient digit selection function prevents the working partial remainder from becoming negative if the result is exact. The enhanced quotient digit selection logic chooses a quotient digit of zero instead of a quotient digit of one when the actual partial remainder is zero. Using a four bit estimated partial remainder where the upper four bits are zero, a possible carry propagation into fourth most significant bit is detected. This can be accomplished by looking at the fourth most significant sum and carry bits of the redundant partial remainder. If they are both zero, then a carry propagation out of that bit position into the least significant position of the estimated partial remainder is not possible, and a quotient digit of zero is chosen. This provides a one cycle savings since negative partial remainders no longer need to be restored before calculating the sticky bit. Extra hardware is eliminated because it is no longer necessary to provide any extra mechanism for restoring the preliminary final partial remainder. Latency is improved because no additional cycle time is required to restore negative preliminary partial remainders. In an alternative embodiment, where the upper three bits of the estimated partial remainder are ones while the fourth most significant bit is zero, a quotient digit of negative one is chosen. This alternative embodiment allows correct exact results in all rounding modes including rounding toward plus or minus infinity.
Owner:ORACLE INT CORP

Method and apparatus for rounding and normalizing results within a multiplier

A multiplier capable of performing signed and unsigned scalar and vector multiplication is disclosed. The multiplier is configured to receive signed or unsigned multiplier and multiplicand operands in scalar or packed vector form. An effective sign for the multiplier and multiplicand operands may be calculated based upon each operand's most significant bit and a control signal. The effective signs may then be used to create and select a number of partial products according to Booth's algorithm. Once the partial products have been created and selected, they may be summed and the results may be output. The results may be signed or unsigned, and may represent vector or scalar quantities. When a vector multiplication is performed, the multiplier may be configured to generate and select partial products so as to effectively isolate the multiplication process for each pair of vector components. The multiplier may also be configured to sum the products of the vector components to form the vector dot product. The final product may be output in segments so as to require fewer bus lines. The segments may be rounded by adding a rounding constant. Rounding and normalization may be performed in two paths, one assuming an overflow will occur, the other assuming no overflow will occur.
Owner:ADVANCED MICRO DEVICES INC

Floating point arithmetic unit including an efficient close data path

An execution unit configured to execute vectored floating point and integer instructions. The execution unit may include an add/subtract pipeline having far and close data paths. The far data path is configured to handle effective addition operations, as well as effective subtraction operations for operands having an absolute exponent difference greater than one. The close data path is configured to handle effective subtraction operations for operands having an absolute exponent difference less than or equal to one. The close data path includes an adder unit configured to generate a first and second output value. The first output value is equal to the first input operand plus an inverted version of the second input operand, while the second output value is equal to the first output value plus one. The two output values are conveyed to a multiplexer unit, which selects one of the output values as a preliminary subtraction result based on a final selection signal received from a selection unit. The selection unit generates the final selection signal from a plurality of preliminary selection signals based on the carry in signal to the most significant bit of the first adder output value. Selection of the first or second output value in the close data path effectuates the round-to-nearest operation.
Owner:ADVANCED SILICON TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products