Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

394 results about "Rounding" patented technology

Rounding a number means replacing it with a different number that is approximately equal to the original, but has a shorter, simpler, or more explicit representation; for example, replacing $23.4476 with $23.45, or the fraction 312/937 with 1/3, or the expression √2 with 1.414.

Method for etching a trench having rounded top and bottom corners in a silicon substrate

The present invention provides straight forward methods for plasma etching a trench having rounded top corners, or rounded bottom corners, or both in a silicon substrate. A first method for creating a rounded top corner on the etched silicon trench comprises etching both an overlying silicon oxide layer and an upper portion of the silicon substrate during a "break-through" step which immediately precedes the step in which the silicon trench is etched. The plasma feed gas for the break-through step comprises carbon and fluorine. In this method, the photoresist layer used to pattern the etch stack is preferably not removed prior to the break-through etching step. Subsequent to the break-through step, a trench is etched to a desired depth in the silicon substrate using a different plasma feed gas composition. A second method for creating a rounded top corner on the etched silicon trench comprises formation of a built-up extension on the sidewall of an overlying patterned silicon nitride hard mask during etch (break-through) of a silicon oxide adhesion layer which lies between the hard mask and a silicone substrate. The built-up extension upon the silicon nitride sidewall acts as a sacrificial masking material during etch of the silicon trench, delaying etching of the silicon at the outer edges of the top of the trench. This permits completion of trench etching with delayed etching of the top corner of the trench and provides a more gentle rounding (increased radius) at the top corners of the trench. During the etching of the silicon trench to its final dimensions, it is desirable to round the bottom corners of the finished silicon trench. We have discovered that a more rounded bottom trench corner is obtained using a two-step silicon etch process where the second step of the process is carried out at a higher process chamber pressure than the first step.
Owner:APPLIED MATERIALS INC

Method and apparatus for multi-function arithmetic

A multiplier capable of performing signed and unsigned scalar and vector multiplication is disclosed. The multiplier is configured to receive signed or unsigned multiplier and multiplicand operands in scalar or packed vector form. An effective sign for the multiplier and multiplicand operands may be calculated and used to create and select a number of partial products according to Booth's algorithm. Once the partial products have been created and selected, they may be summed and the results may be output. The results may be signed or unsigned, and may represent vector or scalar quantities. When a vector multiplication is performed, the multiplier may be configured to generate and select partial products so as to effectively isolate the multiplication process for each pair of vector components. The multiplier may also be configured to sum the products of the vector components to form the vector dot product. The final product may be output in segments so as to require fewer bus lines. The segments may be rounded by adding a rounding constant. Rounding and normalization may be performed in two paths, one assuming an overflow will occur, the other assuming no overflow will occur. The multiplier may also be configured to perform iterative calculations to evaluate constant powers of an operand. Intermediate products that are formed may be rounded and normalized in two paths and then compressed and stored for use in the next iteration. An adjustment constant may also be added to increase the frequency of exactly rounded results.
Owner:ADVANCED SILICON TECH

Method and apparatus for rounding and normalizing results within a multiplier

A multiplier capable of performing signed and unsigned scalar and vector multiplication is disclosed. The multiplier is configured to receive signed or unsigned multiplier and multiplicand operands in scalar or packed vector form. An effective sign for the multiplier and multiplicand operands may be calculated based upon each operand's most significant bit and a control signal. The effective signs may then be used to create and select a number of partial products according to Booth's algorithm. Once the partial products have been created and selected, they may be summed and the results may be output. The results may be signed or unsigned, and may represent vector or scalar quantities. When a vector multiplication is performed, the multiplier may be configured to generate and select partial products so as to effectively isolate the multiplication process for each pair of vector components. The multiplier may also be configured to sum the products of the vector components to form the vector dot product. The final product may be output in segments so as to require fewer bus lines. The segments may be rounded by adding a rounding constant. Rounding and normalization may be performed in two paths, one assuming an overflow will occur, the other assuming no overflow will occur.
Owner:ADVANCED MICRO DEVICES INC

Method and apparatus for simultaneously multiplying two or more independent pairs of operands and calculating a rounded products

A multiplier capable of performing signed and unsigned scalar and vector multiplication is disclosed. The multiplier is configured to receive signed or unsigned multiplier and multiplicand operands in scalar or packed vector form. An effective sign for the multiplier and multiplicand operands may be calculated based upon each operand's most significant bit and a control signal. The effective signs may then be used to create and select a number of partial products according to Booth's algorithm. Once the partial products have been created and selected, they may be summed and the results may be output. The results may be signed or unsigned, and may represent vector or scalar quantities. When a vector multiplication is performed, the multiplier may be configured to generate and select partial products so as to effectively isolate the multiplication process for each pair of vector components. The multiplier may also be configured to sum the products of the vector components to form the vector dot product. The final product may be output in segments so as to require fewer bus lines. The segments may be rounded by adding a rounding constant. Rounding and normalization may be performed in two paths, one assuming an overflow will occur, the other assuming no overflow will occur.
Owner:GLOBALFOUNDRIES INC

Method for etching a trench having rounded top corners in a silicon substrate

The present disclosure includes a method of plasma etching a trench having rounded top corners in a silicon substrate. One embodiment includes the following general steps: a) providing a semiconductor structure comprising a hard masking layer, overlying a silicon substrate; b) plasma etching through said hard masking layer and any additional underlying layers overlying said silicon substrate using at least one plasma feed gas which does not provide polymer deposition on surfaces of said semiconductor structure during etching; where said plasma etching exposes a face of said silicon substrate; and c) plasma etching at least a first portion of a trench into said silicon substrate using reactive species generated from a feed gas comprising a source of fluorine, a source of carbon, a source of hydrogen, and a source of high energy species which provide physical bombardment of said silicon substrate. Top corner rounding is effected by deposition of a thin layer of polymer on a top corner of the trench during etching of the first portion of the trench, resulting in the formation of a rounded "shoulder" at the top corner of the trench. Typically a layer of silicon oxide overlies at least a portion of the silicon substrate surface. The method described provides excellent critical dimension control over the active area of a transistor produced using the method and reduces the need to remove polymer from substrate and reactor surfaces after etching of the silicon trench.
Owner:APPLIED MATERIALS INC

Method and apparatus for simultaneously multiplying two or more independent pairs of operands and summing the products

A multiplier capable of performing signed and unsigned scalar and vector multiplication is disclosed. The multiplier is configured to receive signed or unsigned multiplier and multiplicand operands in scalar or packed vector form. An effective sign for the multiplier and multiplicand operands may be calculated based upon each operand's most significant bit and a control signal. The effective signs may then be used to create and select a number of partial products according to Booth's algorithm. Once the partial products have been created and selected, they may be summed and the results may be output. The results may be signed or unsigned, and may represent vector or scalar quantities. When a vector multiplication is performed, the multiplier may be configured to generate and select partial products so as to effectively isolate the multiplication process for each pair of vector components. The multiplier may also be configured to sum the products of the vector components to form the vector dot product. The final product may be output in segments so as to require fewer bus lines. The segments may be rounded by adding a rounding constant. Rounding and normalization may be performed in two paths, one assuming an overflow will occur, the other assuming no overflow will occur.
Owner:GLOBALFOUNDRIES INC

Powerline data communication

Data communication between two devices (11, 12) over the public powerline network (13) uses a multi carrier technology wherein a communication channel is divided into a plurality of subchannels by frequency division multiplexing. A partial power as part of the total transmission power and a partial rate as a fraction of the total data rate are assigned to each subchannel as follows:Initially, the same partial power is assigned to each subchannel and the S / N ratio of each subchannel is obtained. Starting with the subchannel of the lowest S / N ratio and proceeding to that of the highest S / N ratio, the following steps are performed for each subchannel:Firstly, the partial rate is assigned in accordance with the respective S / N ratio such as to result in a predetermined transmission error rate. The assigned partial rate is then quantised to an integral value. If the quantising corresponds to a rounding down, the initially assigned partial power is reduced such that the transmission error rate remains the same as before quantisation. Further, the partial power of other subchannels with higher S / N ratio is increased such that the sum of all partial powers remains constant. Eventually, the increased S / N ratio resulting from increasing the partial power for these subchannels is calculated so that, when the present steps are conducted for them, an optimum partial rate can be assigned to them.This method maximises the total data rate of the entire communication channel while the error rate of each subchannel and the sum of all partial powers remain constant.
Owner:POLYTRAX INFORMATION TECH

Model area change rate-based adaptive hierarchical processing method

InactiveCN106202687ASolve molding accuracySolve molding speedGeometric CADAdditive manufacturing apparatusRoundingLayer thickness
The invention discloses a model area change rate-based adaptive hierarchical processing method. The method comprises the following steps of importing an STL model and establishing a model topological structure; performing uniform hierarchical slicing on the model with the highest precision, obtaining a two-dimensional polygon contour layer and calculating an area of each layer of a polygon after slicing; performing derivation on the area of each layer of the polygon to obtain an area change rate of the model; comparing the calculated area change rate with a threshold according to a relationship between the area change rate of the model and the printing precision, and obtaining a printing precision distribution situation of the model in a printing direction; calculating hierarchical layer thickness data required for model printing, and performing processing by using a rounding-off method to generate adaptive hierarchical layer thickness data; and reading the hierarchical layer thickness data by a slicing engine, and performing adaptive layer thickness slicing on the model to obtain a gcode file required for printing. According to the method, while the detail characteristics of the model are ensured, the forming speed of the model is increased, and the printing time is effectively shortened.
Owner:HOHAI UNIV CHANGZHOU
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products