Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

9576results about "Concurrent instruction execution" patented technology

Method for selecting active code traces for translation in a caching dynamic translator

A method is shown for selecting active, or hot, code traces in an executing program for storage in a code cache. A trace is a sequence of dynamic instructions characterized by a start address and a branch history which allows the trace to be dynamically disassembled. Each trace is terminated by execution of a trace terminating condition which is a backward taken branch, an indirect branch, or a branch whose execution causes the branch history for the trace to reach a predetermined limit. As each trace is generated by the executing program, it is loaded into a buffer for processing. When the buffer is full, a counter corresponding to the start address of each trace is incremented. When the count for a start address exceeds a threshold, then the start address is marked as being hot. Each hot trace is then checked to see if the next trace in the buffer shares the same start address, in which case the hot trace is cyclic. If the start address of the next trace is not the same as the hot trace, then the traces in the buffer are checked to see they form a larger cycle of execution. If the traces subsequent to the hot trace are not hot themselves and are followed by a trace having the same start address as the hot trace, then their branch histories are companded with the branch history of the hot trace to form a cyclic trace. The cyclic traces are then disassembled and the instructions executed in the trace are stored in a code cache.
Owner:HEWLETT PACKARD DEV CO LP

Microprocessors

A processor (100) is provided that is a programmable fixed point digital signal processor (DSP) with variable instruction length, offering both high code density and easy programming. Architecture and instruction set are optimized for low power consumption and high efficiency execution of DSP algorithms, such as for wireless telephones, as well as pure control tasks. The processor includes an instruction buffer unit (106), a program flow control unit (108), an address / data flow unit (110), a data computation unit (112), and multiple interconnecting busses. Dual multiply-accumulate blocks improve processing performance. A memory interface unit (104) provides parallel access to data and instruction memories. The instruction buffer is operable to buffer single and compound instructions pending execution thereof. A decode mechanism is configured to decode instructions from the instruction buffer. The use of compound instructions enables effective use of the bandwidth available within the processor. A soft dual memory instruction can be compiled from separate first and second programmed memory instructions. Instructions can be conditionally executed or repeatedly executed. Bit field processing and various addressing modes, such as circular buffer addressing, further support execution of DSP algorithms. The processor includes a multistage execution pipeline with pipeline protection features. Various functional modules can be separately powered down to conserve power. The processor includes emulation and code debugging facilities with support for cache analysis.
Owner:TEXAS INSTR INC

Digital signal processor containing scalar processor and a plurality of vector processors operating from a single instruction

A digital data processor integrated circuit (1) includes a plurality of functionally identical first processor elements (6A) and a second processor element (5). The first processor elements are bidirectionally coupled to a first cache (12) via a crossbar switch matrix (8). The second processor element is coupled to a second cache (11). Each of the first cache and the second cache contain a two-way, set-associative cache memory that uses a least-recently-used (LRU) replacement algorithm and that operates with a use-as-fill mode to minimize a number of wait states said processor elements need experience before continuing execution after a cache-miss. An operation of each of the first processor elements and an operation of the second processor element are locked together during an execution of a single instruction read from the second cache. The instruction specifies, in a first portion that is coupled in common to each of the plurality of first processor elements, the operation of each of the plurality of first processor elements in parallel. A second portion of the instruction specifies the operation of the second processor element. Also included is a motion estimator (7) and an internal data bus coupling together a first parallel port (3A), a second parallel port (3B), a third parallel port (3C), an external memory interface (2), and a data input/output of the first cache and the second cache.
Owner:CUFER ASSET LTD LLC

Analyzing and transforming a computer program for executing on asymmetric multiprocessing systems

A method is disclosed for transforming a portion of a computer program comprising a list of sequential instructions comprising control code and data processing code and a program separation indicator indicating a point where said sequential instructions may be divided to form separate sections that are capable of being separately executed and that each comprise different data processing code. The m method comprises the steps of: (i) analysing said portion of said program to determine if said sequential instructions can be divided at said point indicated by said program separation indicator and in response to determining that it can: (iia) providing data communication between said separate sections indicated by said program separation indicator, such that said separate sections can be decoupled from each other, such that at least one of said sections is capable of being separately executed by an execution mechanism that is separate from an execution mechanism executing another of said separate sections, said at least one of said sections being capable of generating data and communicating said data to at least one other of said separate sections; and in response to determining it can not: (iib) not performing step (iia). If step (iia) is not performed then a warning may be output, or the program may be amended so it can be separated at that point, or the program separation indicator may be removed and the sections that were to be separated merged.
Owner:RGT UNIV OF MICHIGAN +1

Extended operand management indicator structure and method

Extended operand management indicators stored during initial program execution enable management and regulation of operand values and streamline their handling. Operand values are stored in new types of stores. Operand location management indicators indicate current operand value locations among various store types for selected operands. Indicated operand-forwarding policies for selected operands streamline forwarding of operand values from source instructions to value receiving target instructions. Indicated loop iterations of operand source instructions enable forwarding of operands over more than one loop iteration. Stride indicators indicate strides of program loop accesses to matrix operands. Inter-loop indicators enable forwarding of operand values from source loop instructions directly to target loop instructions. Constant or nearly constant operands are indicated to enable their storage in special caches. Operands used for cross-CPU serialization are indicated for special handling and storage in spin lock cache. Indicators of farthest back and farthest forward branches since operand last update are used to enhance the prediction of longer-range branch directions. Virtual predicate operand indicators streamline execution of densely branching program code. Stack operand indicators enable nullification of paired stack pointer increment-decrement operations to avoid serious operand serialization bottlenecks in very high issue rate machines.
Owner:WILMOT II RICHARD BYRON

Reconfigurable data path processor

A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.
Owner:STC UNM +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products