Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

518 results about "Crossbar switch" patented technology

In electronics, a crossbar switch (cross-point switch, matrix switch) is a collection of switches arranged in a matrix configuration. A crossbar switch has multiple input and output lines that form a crossed pattern of interconnecting lines between which a connection may be established by closing a switch located at each intersection, the elements of the matrix. Originally, a crossbar switch consisted literally of crossing metal bars that provided the input and output paths. Later implementations achieved the same switching topology in solid state semiconductor chips. The cross-point switch is one of the principal switch architectures, together with a rotary switch, memory switch, and a crossover switch.

Upstream only linecard with front end multiplexer for CMTS

An upstream line card including a digital or analog multiplexer front end circuit for a Cable Modem Termination System. Each upstream line card has only upstream receivers and allows a CMTS to share one or a handful of receiver chips to receive and recover data from a larger number of input cables coupled to the front end multiplexer. A control circuit for the multiplexer uses MAP data and burst assignment data and upstream mini-slot counts for each of the input cables to determine when a burst is about to arrive on a cable and cause appropriate switching by the multiplexer or crossbar switch. In some embodiments, there is only one RF channel circuit coupled to the output of the multiplexer, so the multiplexer is controlled to couple the input cable upon which the burst is expected to the single RF channel. In other embodiments, there are multiple RF channels coupled to the inputs of the multiplexer so the multiplexer is controlled to connect each input cable on which a burst is expected to an available RF channel. In some embodiments, the sample data generated by each RF channel is buffered and an arbiter picks one burst at a time for application to the input of a CMTS receiver or doles out bursts to different receivers. In other embodiments, no buffers or arbiter are used, and each RF channel has its own dedicated CMTS receiver.
Owner:GOOGLE TECH HLDG LLC

Digital camera system containing a VLIW vector processor

A digital camera has a sensor for sensing an image, a processor for modifying the sensed image in accordance with instructions input into the camera and an output for outputting the modified image where the processor includes a series of processing elements arranged around a central crossbar switch. The processing elements include an Arithmetic Logic Unit (ALU) acting under the control of a writeable microcode store, an internal input and output FIFO for storing pixel data to be processed by the processing elements and the processor is interconnected to a read and write FIFO for reading and writing pixel data of images to the processor. Each of the processing elements can be arranged in a ring and each element is also separately connected to its nearest neighbors. The ALU receives a series of inputs interconnected via an internal crossbar switch to a series of core processing units within the ALU and includes a number of internal registers for the storage of temporary data. The core processing units can include at least one of a multiplier, an adder and a barrel shifter. The processing elements are further connected to a common data bus for the transfer of a pixel data to the processing elements and the data bus is interconnected to a data cache which acts as an intermediate cache between the processing elements and a memory store for storing the images.
Owner:GOOGLE LLC

Digital signal processor containing scalar processor and a plurality of vector processors operating from a single instruction

A digital data processor integrated circuit (1) includes a plurality of functionally identical first processor elements (6A) and a second processor element (5). The first processor elements are bidirectionally coupled to a first cache (12) via a crossbar switch matrix (8). The second processor element is coupled to a second cache (11). Each of the first cache and the second cache contain a two-way, set-associative cache memory that uses a least-recently-used (LRU) replacement algorithm and that operates with a use-as-fill mode to minimize a number of wait states said processor elements need experience before continuing execution after a cache-miss. An operation of each of the first processor elements and an operation of the second processor element are locked together during an execution of a single instruction read from the second cache. The instruction specifies, in a first portion that is coupled in common to each of the plurality of first processor elements, the operation of each of the plurality of first processor elements in parallel. A second portion of the instruction specifies the operation of the second processor element. Also included is a motion estimator (7) and an internal data bus coupling together a first parallel port (3A), a second parallel port (3B), a third parallel port (3C), an external memory interface (2), and a data input/output of the first cache and the second cache.
Owner:CUFER ASSET LTD LLC

Multiprocessor node controller circuit and method

Improved method and apparatus for parallel processing. One embodiment provides a multiprocessor computer system that includes a first and second node controller, a number of processors being connected to each node controller, a memory connected to each controller, a first input / output system connected to the first node controller, and a communications network connected between the node controllers. The first node controller includes: a crossbar unit to which are connected a memory port, an input / output port, a network port, and a plurality of independent processor ports. A first and a second processor port connected between the crossbar unit and a first subset and a second subset, respectively, of the processors. In some embodiments of the system, the first node controller is fabricated onto a single integrated-circuit chip. Optionally, the memory is packaged on plugable memory / directory cards wherein each card includes a plurality of memory chips including a first subset dedicated to holding memory data and a second subset dedicated to holding directory data. Further, the memory port includes a memory data port including a memory data bus and a memory address bus coupled to the first subset of memory chips, and a directory data port including a directory data bus and a directory address bus coupled to the second subset of memory chips. In some such embodiments, the ratio of (memory data space) to (directory data space) on each card is set to a value that is based on a size of the multiprocessor computer system.
Owner:HEWLETT-PACKARD ENTERPRISE DEV LP +1

Methods and apparatus for device zoning in fibre channel arbitrated loop systems

ActiveUS7397788B2Effectively and efficiently switchImproved device access fairnessError preventionFrequency-division multiplex detailsCrossbar switchRouting table
Methods and apparatus for switching Fibre Channel Arbitrated Loop Systems is provided between a plurality of Fibre Channel Loop devices. In one aspect of the invention, the system switches based at least in part on arbitrated loop primitives. An exemplary interconnect system may include a first port and a second port, both including port logic to monitor certain arbitrated loop primitives, a connectivity apparatus, a route determination apparatus including a routing table consisting of ALPA addresses and their associated ports, the route determination apparatus coupled to each port and the connectivity apparatus, where the connectivity apparatus creates paths between the ports based on arbitrated loop primitives. In one embodiment, the connectivity apparatus is a crossbar switch. Examples of the arbitrated loop primitives that cause the switch to create paths between ports includes one or more of the following: ARB, OPN and CLS. In yet other aspects, the system ensures device access fairness through one or more techniques, including a rotating priority system, a counter to count the number of OPNs, especially sequential OPNs, and/or priority based on port type. Device zoning may be implemented. In one implementation, the system includes trunking such that frames may be transferred on multiple ports.
Owner:AVAGO TECH INT SALES PTE LTD

Methods and apparatus for switching fibre channel arbitrated loop systems

InactiveUS7382790B2Effectively and efficiently switchImproved device access fairnessNetworks interconnectionElectric digital data processingCrossbar switchRouting table
Methods and apparatus for switching Fibre Channel Arbitrated Loop Systems is provided between a plurality of Fibre Channel Loop devices. In one aspect of the invention, the system switches based at least in part on arbitrated loop primitives. An exemplary interconnect system may include a first port and a second port, both including port logic to monitor certain arbitrated loop primitives, a connectivity apparatus, a route determination apparatus including a routing table consisting of ALPA addresses and their associated ports, the route determination apparatus coupled to each port and the connectivity apparatus, where the connectivity apparatus creates paths between the ports based on arbitrated loop primitives. In one embodiment, the connectivity apparatus is a crossbar switch. Examples of the arbitrated loop primitives that cause the switch to create paths between ports includes one or more of the following: ARB, OPN and CLS. In yet other aspects, the system ensures device access fairness through one or more techniques, including a rotating priority system, a counter to count the number of OPNs, especially sequential OPNs, and/or priority based on port type. Device zoning may be implemented. In one implementation, the system includes trunking such that frames may be transferred on multiple ports.
Owner:AVAGO TECH INT SALES PTE LTD

RRGS-round-robin greedy scheduling for input/output terabit switches

A novel protocol for scheduling of packets in high-speed cell based switches is provided. The switch is assumed to use a logical cross-bar fabric with input buffers. The scheduler may be used in optical as well as electronic switches with terabit capacity. The proposed round-robin greedy scheduling (RRGS) achieves optimal scheduling at terabit throughput, using a pipeline technique. The pipeline approach avoids the need for internal speedup of the switching fabric to achieve high utilization. A method for determining a time slot in a NxN crossbar switch for a round robin greedy scheduling protocol, comprising N logical queues corresponding to N output ports, the input for the protocol being a state of all the input-output queues, output of the protocol being a schedule, the method comprising: choosing input corresponding to i=(constant-k-1)mod N, stopping if there are no more inputs, otherwise choosing the next input in a round robin fashion determined by i=(i+1)mod N; choosing an output j such that a pair (i,j) to a set C={(i,j)| there is at least one packet from I to j}, if the pair (i,j) exists; removing i from a set of inputs and repeating the steps if the pair (i,j) does not exist; removing i from the set of inputs and j from a set of outputs; and adding the pair (i,j) to the schedule and repeating the steps.
Owner:NEC CORP

Method and apparatus to schedule packets through a crossbar switch with delay guarantees

A method for scheduling cell transmissions through a switch with rate and delay guarantees and with low jitter is proposed. The method applies to a classic input-buffered N×N crossbar switch without speedup. The time axis is divided into frames each containing F time-slots. An N×N traffic rate matrix specifies a quantized guaranteed traffic rate from each input port to each output port. The traffic rate matrix is transformed into a permutation with NF elements which is decomposed into F permutations of N elements using a recursive and fair decomposition method. Each permutation is used to configure the crossbar switch for one time-slot within a frame of size F time-slots, and all F permutations result in a Frame Schedule. In the frame schedule, the expected Inter-Departure Time (IDT) between cells in a flow equals the Ideal IDT and the delay jitter is bounded and small. For fixed frame size F, an individual flow can often be scheduled in O(logN) steps, while a complete reconfiguration requires O(NlogN) steps when implemented in a serial processor. An RSVP or Differentiated Services-like algorithm can be used to reserve bandwidth and buffer space in an IP-router, an ATM switch or MPLS switch during a connection setup phase, and the proposed method can be used to schedule traffic in each router or switch. Best-effort traffic can be scheduled using any existing dynamic scheduling algorithm to fill the remaining unused switch capacity within each Frame. The scheduling algorithm also supports multicast traffic.
Owner:SZYMANSKI TED HENRYK

Opto-electronic distributed crossbar switch

The invention is an optoelectronic (OE) crossbar switch (10) for both digital and analog signals, used either separately or combined, whose functions are reconfigurable and distributed. The invention allows multiple senders to be connected with multiple receivers simultaneously. The invention uses optical filters for wavelength division multiplexing and demultiplexing (WDM and WDD). A single fiber module input / output port carries multiple bi-directional signals that are optically filtered out in the module using WDM / WDD filters (12) at each sender / receiver and then selected after optical filtering using photodiode detectors (15) as detectors and switches. Laser transmitters (14), photodiode detectors (15), and smart electronics (18) are used to implement the crossbar switch functions. In addition to optical filters, the use of time division multiplexing (TDM) and code division multiple access (CDMA) implemented either electrically or optically are taught to increase the number of independent users that the distributed switch handles. The switch can be cascaded with other switches using optical bridging circuits (100) to create a scaleable interconnect fabric. An arbitration technique can be used which allows signals to be sent only when the intended receiver is capable of accepting these signals.
Owner:RAYTHEON CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products