Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

656 results about "Signal routing" patented technology

Molecular-wire crossbar interconnect (MWCI) for signal routing and communications

A molecular-wire crossbar interconnect for signal routing and communications between a first level and a second level in a molecular-wire crossbar is provided. The molecular wire crossbar comprises a two-dimensional array of a plurality of nanometer-scale switches. Each switch is reconfigurable and self-assembling and comprises a pair of crossed wires which form a junction where one wire crosses another and at least one connector species connecting the pair of crossed wires in the junction. The connector species comprises a bi-stable molecule. Each level comprises at least one group of switches and each group of switches comprises at least one switch, with each group in the first level connected to all other groups in the second level in an all-to-all configuration to provide a scalable, defect-tolerant, fat-tree networking scheme. The primary advantage is ease of fabrication, because an active switch is formed any time two wires cross. This saves tremendously on circuit area (a factor of a few times ten), since no other wires or ancillary devices are needed to operate the switch or store the required configuration. This reduction of the area of a configuration bit and its switch to just the area of two crossing wires is a major advantage in constructing a defect-tolerant interconnect network.
Owner:HEWLETT PACKARD CO +1

Apparatus and method of in-service audio/video synchronization testing

An apparatus and method provide non-intrusive in-service testing of audio/video synchronization testing without using traditional audio marker tones. The network includes an A/V synchronous test signal generator which injects video and audio markers into the video and audio non-intrusively and routes the two signals into a switch where they are switched into a channel for encoding and transmission via the ATM network. At the distant end the signal is decoded and routed by a switch into the A/V test generator and measurement set where the markers are detected and the A/V skew calculated, after which the audio and video are routed to the subscriber. The A/V test set signal generator includes a Video Blanking Interval (VBI) test signal generator and a white noise generator, the former injecting a marker into the video signal and the later injecting an audio marker into the audio signal. The video marker is injected into the VBI and broadband, background audio noise to measure the delay between the audio and video components of a broadcast. The marking of the audio is accomplished by gradually injecting white noise into the audio channel until the noise level is 6 dB above the noise floor of the audio receiver. As a precursor A/V sync signal, a small spectrum of the white noise is notched or removed. This signature precludes inadvertent recognition of program audio noise as the audio marker.
Owner:IBM CORP

Multi-channel network monitoring apparatus, signal replicating device, and systems including such apparatus and devices, and enclosure for multi-processor equipment

A multi-channel network monitoring apparatus has input connectors for network signals to be monitored and four channel processors in a rack-mountable chassis/enclosure for receiving and processing a respective pair of incoming signals to produce monitoring results. Each processor operates independently of the others and is replaceable without interrupting their operation. LAN connectors enable onward communication of the monitoring results. A cross-point switch routes each incoming signal to a selected processor and can re-route a channel to another processor in the event of processor outage. Each processor has a self-contained sub-system of processing modules interconnected via a CPU-peripheral interface in a backplane, which provides a separate peripheral interface for each processor. The backplane provides locations for processors to lie horizontally across a major portion of the backplane area facing the front of the enclosure, and a location for an interface module over a minor portion of that area facing the rear, so as to provide external connectors at the rear of the enclosure. A power supply module is positioned over another portion of the backplane area, on the same side as the interface module. The location of the power supply module behind the backplane saves height and/or width in the rack.
Owner:VIAVI SOLUTIONS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products