Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

504 results about "Active switch" patented technology

Active Switch, formerly known as the Activate Your Commute Program, is an engaging health and wellness program that focuses on motivating users to get from 'Point A to B' using active and healthy travel options.

Molecular-wire crossbar interconnect (MWCI) for signal routing and communications

A molecular-wire crossbar interconnect for signal routing and communications between a first level and a second level in a molecular-wire crossbar is provided. The molecular wire crossbar comprises a two-dimensional array of a plurality of nanometer-scale switches. Each switch is reconfigurable and self-assembling and comprises a pair of crossed wires which form a junction where one wire crosses another and at least one connector species connecting the pair of crossed wires in the junction. The connector species comprises a bi-stable molecule. Each level comprises at least one group of switches and each group of switches comprises at least one switch, with each group in the first level connected to all other groups in the second level in an all-to-all configuration to provide a scalable, defect-tolerant, fat-tree networking scheme. The primary advantage is ease of fabrication, because an active switch is formed any time two wires cross. This saves tremendously on circuit area (a factor of a few times ten), since no other wires or ancillary devices are needed to operate the switch or store the required configuration. This reduction of the area of a configuration bit and its switch to just the area of two crossing wires is a major advantage in constructing a defect-tolerant interconnect network.
Owner:HEWLETT PACKARD CO +1

Soft-switched quasi-single-stage (QSS) bi-directional inverter/charger

A soft-switched single-phase quasi-single-stage (QSS) bi-directional inverter / charger converts AC-DC or DC-AC. The inverter / charger comprises a push-pull inverter / rectifier on the dc-side, an isolation transformer which provides ohmic isolation and voltage scaling, two full-bridges on the ac side in cascade, a voltage clamp branch comprising a capacitive energy storage element in series with an active switch with its anti-parallel diode, a passive filter at the ac side to smooth out the high frequency switching voltage ripple at the output, and a corresponding PWM scheme to seamlessly control the converter to operate in all four quadrant operation modes in the output voltage and output current plane, and is capable of converting power in both directions.
Owner:VIRGINIA TECH INTPROP INC

System and method for load-sharing computer network switch

A computer network switch system is disclosed. A switch system may be configured as a single chassis system that has at least one line card, a set of active switch fabric cards to concurrently carry network traffic; and a first system control card to provide control functionality for the line card. The switch system may be configured as a multiple chassis system that has at least one line card chassis containing several line cards, and a switch fabric chassis (or a second line card chassis) that contains several switch fabric cards to provide a switching fabric with multiple ports. Load-sharing is accomplished primarily at the chip level, although card-level load-sharing is possible.
Owner:CIPHERMAX

Driving circuit for high intensity discharge lamp electronic ballast

A circuit arrangement and control thereof for igniting a high intensity discharge (HID) lamp, for reducing the high frequency ripple superimposed on the low frequency rectangular waveform lamp current after ignition, and for increased circuit efficiency. The high frequency ignition voltage is only applied to the lamp during ignition phase and is mainly generated by the second stage of the low pass (LP) filter. The first stage of the LP filter whose resonant frequency is below the second stage further attenuates the high frequency ripple current through the lamp in normal operation. The resulting lamp current is a low frequency rectangular wave with less than 10% high frequency ripple. Acoustic resonance is avoided. The inductor in the first stage of LP filter is operated in discontinuous current mode. Doing so, the active switches are in zero current switching (ZCS) to maximize the circuit efficiency.
Owner:MATSUSHITA ELECTRIC WORKS LTD

Programmable Microphone

A semiconductor die with an integrated electronic circuit, configured so as to be mounted in a housing with a capacitive transducer e.g. a microphone. A first circuit is configured to receive an input signal from the transducer at an input node and to provide an output signal at a pad of the semiconductor die. The integrated electronic circuit comprises an active switch device with a control input, coupled to a pad of the semiconductor die, to operatively engage or disengage a second circuit interconnected with the first circuit so as to operate the integrated electronic circuit in a mode selected by the control input. That is, a programmable or controllable transducer. The second circuit is interconnected with the first circuit so as to be separate from the input node. Thereby less noise is induced, a more precise control of the circuit is obtainable and more advanced control options are possible.
Owner:ANALOG DEVICES INC

Low noise charge pump method and apparatus

A charge pump method and apparatus is described having various aspects. Noise injection from a charge pump to other circuits may be reduced by limiting both positive and negative clock transition rates, as well as by limiting drive currents within clock generator driver circuits, and also by increasing a control node AC impedance of certain transfer capacitor coupling switches. A single-phase clock may be used to control as many as all active switches within a charge pump, and capacitive coupling may simplify biasing and timing for clock signals controlling transfer capacitor coupling switches. Any combination of such aspects of the method or apparatus may be employed to quiet and / or simplify charge pump designs over a wide range of charge pump architectures.
Owner:PSEMI CORP

Voltage clamping system and method for a DC/DC power converter

A voltage boost power converter circuit, having an input inductor, active switch, and a transformer having primary, secondary and auxiliary windings. A clamping capacitor and a first passive switch are in series across the primary winding. The auxiliary winding and a second passive switch are in series, connected to the node between the clamping capacitor and first passive switch. The active switch is connected between ground the primary winding. A bulk capacitor forms a series loop including the active switch and primary winding. The method efficiently resets a the transformer, by transferring power to a load through the primary winding, and discharging a clamping capacitor through a separate inductively linked winding of the transformer during an ON state; and clamping the active switch voltage with the clamping capacitor, charging the clamping capacitor with a leakage inductance of the transformer, and charging the bulk capacitor during an OFF state.
Owner:PHILIPS ELECTRONICS NORTH AMERICA

Switching-mode power supply having a synchronous rectifier

A DC-to-DC converter incorporates a transformer having a primary winding connected to a pair of DC input terminals via an active switch, which turns on and off under the control of a feedback circuit, and a secondary winding connected to a pair of DC output terminals via a synchronous rectifier and a smoothing capacitor. The synchronous rectifier is a parallel connection of a synchronous rectifier switch and a diode. A synchronous rectifier control circuit is connected to the synchronous rectifier switch for causing conduction therethrough while the active switch is off. The synchronous rectifier control circuit comprises a capacitor for determination of the conducting periods of the synchronous rectifier switch, and a logic network for on / off control of the synchronous rectifier switch according to whether the active switch is on or off and whether the capacitor voltage is higher than a predefined threshold or not.
Owner:SANKEN ELECTRIC CO LTD

Switch type regulator and control method thereof

The present invention relates to a circuit layout of a switch type regulator and control method thereof. The switch type regulator according to one embodiment of the invention includes: (1) a filter network connected to the output terminal, wherein the output voltage of the output terminal is generated by an input source; (2) an active switch connecting the input source to a wave filter circuit, wherein the active switch is periodically connected and disconnected, and the conducting duty cycle of the switch period is modulated by a PWM control signal; (3) a comparator, which receives output feedback signals, a delay signal and a reference delay, and provides the PWM control signal; (4) a delay programming circuit for generating the delay signal and a ramp control signal, wherein the delay signal is set up based on the status of the input source and the output voltage, to obtain an operating status with fundamentally constant frequency.
Owner:SILERGY SEMICON TECH (HANGZHOU) CO LTD

Low noise charge pump method and apparatus

A charge pump method and apparatus is described having various aspects. Noise injection from a charge pump to other circuits may be reduced by limiting both positive and negative clock transition rates, as well as by limiting drive currents within clock generator driver circuits, and also by increasing a control node AC impedance of certain transfer capacitor coupling switches. A single-phase clock may be used to control as many as all active switches within a charge pump, and capacitive coupling may simplify biasing and timing for clock signals controlling transfer capacitor coupling switches. Any combination of such aspects of the method or apparatus may be employed to quiet and / or simplify charge pump designs over a wide range of charge pump architectures.
Owner:PSEMI CORP

Method and device for determining a control scheme for an active power filter

A method is provided for determining a control scheme for a neutral point clamped (NPC) voltage source converter (VSC) with at least 3 levels and a topology of three bridge legs between each of three phases of a grid and a neutral point. Each leg includes at least four active switches, and a clamping carrier modulator synchronized with the grid is provided for the control of no-switching intervals. The method includes: analyzing the waveform of the grid and / or a load voltage and determining windows defining an allowed period for no-switching of the corresponding bridge leg; operating or simulating the operation of the voltage source converter with different clamping carrier modulator frequencies, and then analyzing the balance in the operating junction temperatures and / or power losses across the active switches and also analyzing the total losses of the voltage source converter; comparing the balance and the total losses of different clamping carrier modulator frequencies and selecting either the clamping carrier modulator frequency according to showing, as primary criterion, the better balance and, as secondary criterion, the lower total losses; operating or simulating the operation of the voltage source converter with the selected clamping carrier modulator frequency, while iteratively changing at least one of the following operating parameters of the voltage source converter: switching frequency, DC-link voltage reference, duty cycle of clamping carrier modulator, phase shift of the clamping carrier modulator relative to the grid, and optimizing the balance in the operating junction temperatures and / or power losses across the active switches and the total losses of the voltage source converter as a function of the adjustment of these operating parameters until reaching optimum operation parameters for the control scheme.
Owner:GENERAL ELECTRIC TECH GMBH

Method and apparatus for auto-protocol discrimination between fibre channel, SAS and SATA devices

Auto-discrimination between FC and SATA devices upon insertion of a device into a port of a FAST-compatible switch is disclosed. Without user intervention, the port is able to determine the type of device attached, set the appropriate data rate in the Phy or SERDES and, in the case of FC or SATA drives, start the disk insertion process into the active switch zones. The SERDES is first initialized to FC speeds, and the receive path is searched for a receive signal. Upon detecting a receive signal, the detection circuitry then checks to see if a valid SATA Out Of Band (OOB) sequence is received. If a valid SATA OOB sequence is received, the SERDES is configured for SATA speeds and analog settings. If a valid SATA OOB sequence is not received, and instead a FC auto-negotiation process runs to completion, the SERDES remains at FC speeds.
Owner:AVAGO TECH INT SALES PTE LTD

Zero-voltage-switching DC-DC converters with synchronous rectifiers

A DC-DC converter includes an inductor, a synchronous rectifier (SR) connected to the inductor, and an active switch connected to the inductor and the SR. An active resonant tank (ART) cell is connected to the SR or a transformer in parallel such that a resonant capacitor of the ART cell is charged through the active switch and discharged through the synchronous rectifier so that during a switch transition period energy is pumped out of the resonant capacitor by activating the ART cell to eliminate reverse recovery switching loss and achieve Zero Voltage Switching (ZVS).
Owner:ASTEC INT LTD

Single-phase self-driven full-bridge synchrounous rectification

A full-bridge rectifier is configured to provide synchronous rectification with either a current-source or a voltage-source. The rectifier has an upper branch and a lower branch and two current loops, with each of the branches including voltage- or current-controlled active switches, diodes or combinations thereof that are selected such that each loop includes one active switch or diode from the upper branch and one active switch or diode from the lower branch, and each current loop comprises at least one diode or current-controlled active switch, and at least one voltage- or current-controlled active switch is included in one of the upper or lower branches.
Owner:CONVENIENTPOWER HK

Amplified optical circuit

An optical circuit can include a bidirectional amplifier connected so as to amplify source light prior to emission through an output device such as a telescope as well as amplification of reflected light received by the telescope. Such an optical circuit can be used in laser doppler velocimeter applications as well as other applications. The optical circuit can also include passive splitters or active switches to provide for advantageous multiplexing.
Owner:SENSTHYS INC

Active resonant snubber for dc-dc converter

The present invention proposes an improved circuit design and configuration of a DC-DC converter with resonant reset. In this present invention, the active resonant snubber in parallel to a primary winding of a transformer of a DC-DC converter for resetting the transformer includes a resonant capacitor, an active switch connected to the resonant capacitor in series, an auxiliary diode coupled across the active switch in parallel, and an auxiliary winding coupled with the transformer. When a main switch of the DC-DC converter is turned off, the auxiliary winding turns on the active switch, and then the transformer is reset by a resonance between a magnetizing inductor of the transformer and the resonant capacitor.
Owner:DELTA ELECTRONICS INC

Dc-to-ac power inverting apparatus for photovoltaic modules

The disclosure provides a DC-to-AC power inverting apparatus for photovoltaic modules, which comprises two stages: a first stage including a resonant circuit in series, an isolating transformer with three windings, a full-bridge DC-to-AC converting unit operating in a high-frequency switch mode so as to reduce the transformer volume, and a full-wave rectifier; while a second stage including a half-bridge single-phase inverter unit with two active switches. In the first stage, any high-frequency AC signal produced from the primary winding of the isolating transformer is converter into a DC signal by the full-wave rectifier at the secondary winding of the isolation transformer. Moreover, the switching of the two active switches in the second stage is controlled to operate in a low-frequency mode using a switching frequency synchronized with the frequency of the public electrical supply to control the AC output, and thus to reduce the switching loss of the active switches.
Owner:IND TECH RES INST

Driving circuit for DC/DC converter

A driving circuit comprises an input terminal receiving an input of a PWM signal, a first output terminal connected to a main switch for outputting a low-side driving signal, a second output terminal connected to an active switch for outputting a high-side driving signal, a first branch having a voltage level shifting capacitor and a first buffer connected in series between the input terminal and the second output terminal; and a second branch having a delay circuit and a second buffer connected in series between the input terminal and the first output terminal. When the input of the PWM signal turns from a low level to a high level, the voltage level shifting capacitor transmits the input of PWM signal to the first buffer for turning off the active switch and then triggering the second buffer to turn on the main switch with a short time delay.
Owner:DELTA ELECTRONICS INC

Quasi active power factor correction circuit for switching power supply

A switching power supply AC-DC-DC or AC-DC-AC with power factor corrector function is provided. The switching power supply circuit includes a quasi active shaping function that shapes an input current of a power line. In the whole system, the active switch or switches are only used to control the output power and no more current stress on the active switch or switches. It is possible to minimize the whole system size.
Owner:WENG DA FENG

Driving circuit for DC/DC converter

A driving circuit comprises an input terminal receiving an input of a PWM signal, a first output terminal connected to a main switch for outputting a low-side driving signal, a second output terminal connected to an active switch for outputting a high-side driving signal, a first branch having a voltage level shifting capacitor and a first buffer connected in series between the input terminal and the second output terminal; and a second branch having a delay circuit and a second buffer connected in series between the input terminal and the first output terminal. When the input of the PWM signal turns from a low level to a high level, the voltage level shifting capacitor transmits the input of PWM signal to the first buffer for turning off the active switch and then triggering the second buffer to turn on the main switch with a short time delay.
Owner:DELTA ELECTRONICS INC

Adaptive circuit

The invention discloses an adaptive circuit which is used for driving a lower-voltage DC (direct current) load (2) from a rectifying higher-voltage AC (alternating current) power supply (3), comprising charge storage circuits (21, 21') and active switch (22, 22') which are realized as controlled current sources (22, 22'), wherein the charge storage circuits (21,21') respectively comprise a first capacitor (C1) and a second capacitor (C2) in series connection basically; the second capacitor (C2) is in parallel connection with the load (2) at least; and the active switches (22, 22') are used for controlling load current (Iload) by the load (2), so that the load current (Iload) is sucked basically by the first capacitors (C1) in the charge storage circuits (21,21') in a closed switch state and the load current (Iload) is sucked by the second capacitors (C2) basically in a broken switch state. The invention also discloses an LED (light-emitting diode) improved lamp (4), comprising a connecting device (40) which is used for connecting the LED improved lamp (4) with a higher-voltage utility power signal (UPS), an LED device (2) which is specified to be used for a lower-voltage power supply and the adaptive circuit (1, 1') which is used for adjusting a higher-voltage utility power signal (UPS) to a low-voltage signal (UC2) so as to drive the lower-voltage LED device (2). The invention also discloses a method for driving the lower-voltage DC load (2) from the rectifying higher-voltage AC power supply (3).
Owner:SIGNIFY HLDG BV

Soft-switched bidirectional buck-boost converters

A bidirectional buck-boost converter includes at least one soft-switching cell to reduce switching losses by providing soft-switching of all semiconductor devices. A soft-switching cell comprises an active switch coupled in series with an inductor, a two-winding transformer, and a reset-voltage circuit. The soft-switching cells enable the buck and boost rectifiers to turn off with a controlled turn-off rate of their current to minimize their reverse-recovery losses, the power-controlling buck and boost switch to turn on with zero-voltage switching (ZVS), and the switch of the soft-switching cell to turn off with zero-current switching (ZCS).
Owner:DELTA ELECTRONICS INC

On-line detection system and method for work junction temperature of power diode module

The invention discloses an on-line detection system and method for the work junction temperature of a power diode module. According to the on-line detection system and method, on-off of an active switch device is controlled to enable the power diode module to be switched in the turn-on state and the turn-off state. When the power diode module is switched to be turned off from being turned on, currents flowing through the power diode module are converted to a complementary switch tube, the reverse recovery currents of the power diode module can generate corresponding induced voltages on a stray inductor of a conversion circuit, and the induced voltages are related to the reverse recovery currents of the power diode module and also comprise the temperature information of the power diode module. According to the on-line detection system and method for the work junction temperature of the power diode module, the variation condition of the reverse recovery currents comprising the temperature information can be measured on the complementary switch tube only by one low-voltage amplitude detection circuit, and additional high-voltage passive auxiliary elements are of no need. While a driving circuit sends control signals, variation voltages caused by the reverse recovery currents are captured, and high precision and real-time performance are achieved.
Owner:ZHEJIANG UNIV

Shadow elimination circuit and display device

The invention discloses a shadow elimination circuit and a display device. The shadow elimination circuit includes a detection unit and a control unit, the detection unit generates a control signal after detecting that the display device is turned off; the control unit is connected with the detection unit and controls the gate driving unit of the display device so that the gate low level outputted by the gate driving unit is a preset level while receiving the control signal, wherein the preset level turns on the active switch of the display device. When the display device is turned off, the gate low level is the preset level, the active switch is normally open, the discharging of the LCD capacitor and the storage capacitor of the display device is accelerated, and the phenomenon of shutdown blur can be eliminated, meanwhile, the detection unit and the control unit can be realized by a comparator and a field effect transistor. Therefore, compared with the existing gate driving circuit with XAO (Output ALL-ON Control, signal forced pull, also known as XON) signal, the shadow elimination circuit reduces the cost of the display device.
Owner:HKC CORP LTD +1

Switching-mode power supply having a synchronous rectifier

A DC-to-DC converter incorporates a transformer having a primary winding connected to a pair of DC input terminals via an active switch, which turns on and off under the control of a feedback circuit, and a secondary winding connected to a pair of DC output terminals via a synchronous rectifier and a smoothing capacitor. The synchronous rectifier is a parallel connection of a synchronous rectifier switch and a diode. A synchronous rectifier control circuit is connected to the synchronous rectifier switch for causing conduction therethrough while the active switch is off. The synchronous rectifier control circuit comprises a capacitor for determination of the conducting periods of the synchronous rectifier switch, and a logic network for on / off control of the synchronous rectifier switch according to whether the active switch is on or off and whether the capacitor voltage is higher than a predefined threshold or not.
Owner:SANKEN ELECTRIC CO LTD

System and method for power conversion

An ac-ac power converter system is provided for supplying power to an electrical load. The ac-ac power converter system provides an output voltage having variable amplitude and / or frequency. The ac-ac power converter system includes a boost inductor for applying a discontinuous current to an ac-ac power converter. The ac-ac power converter includes a rectifier circuit comprising of a first set of gate controllable active switches for converting an input ac power to a dc power and an inverter circuit comprising of a second set of gate controllable active switches for converting the dc power to an output ac power. In addition, the ac-ac power converter system includes a switch for switching between a first mode of operation and a second mode of operation. The first set of gate controllable active switches is common between the inverter circuit and the rectifier circuit and is operable at about 50 percent of duty cycle in the first mode of operation while the inverter circuit is a half bridge inverter circuit in the second mode of operation.
Owner:GENERAL ELECCRTIC

Switching-mode power supply having a synchronous rectifier

A switching-mode power supply capable of causing conduction through a synchronous rectifier switch exactly when required. Included is a transformer having a primary winding connected to a pair of DC input terminals via an active switch, and a secondary winding connected to a pair of DC output terminals via a synchronous rectifier and a smoothing capacitor. The synchronous rectifier is a parallel connection of a synchronous rectifier switch and a diode. In order to cause conduction through the synchronous rectifier switch while the diode is conducting, there is provided a synchronous rectifier control circuit comprising two current sources, a conduction period determination circuit, and a synchronous rectifier switch control pulse forming circuit.
Owner:SANKEN ELECTRIC CO LTD

Method for quick multi-wireless module switching

The invention discloses a method for quick multi-wireless module switching, which comprises the following steps that: an independent primary wireless module undertakes a foreground wireless transmission task and an independent secondary wireless module undertakes a background scanning task at the same time to realize the synchronous operation of foreground wireless transmission and background scanning; when the secondary wireless module finds a new target AP with higher signal quality, the target AP is switched to for forming a secondary link; when the transmission performance of the secondary link is advantageous over that of a primary link, the primary and secondary priorities of the two links is switched; a two-layer routing is updated according to the switched links; and the previous processes is circularly executed. The method has the advantages of realizing real network seamless switching due to the fact that the secondary link is already superior to the primary link during the execution of primary / secondary link switching and allowing a product which is based on the method to keep continuous network connection unlike the prior station active switch method and the prior IAPP method both of which are incapable of realizing vehicle-mounted fast moving application and cause obvious network interruption during the execution of inter-AP switching in a running process of a vehicle.
Owner:FUJIAN UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products