Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1316 results about "Leakage inductance" patented technology

Leakage inductance derives from the electrical property of an imperfectly-coupled transformer whereby each winding behaves as a self-inductance in series with the winding's respective ohmic resistance constant. These four winding constants also interact with the transformer's mutual inductance. The winding leakage inductance is due to leakage flux not linking with all turns of each imperfectly-coupled winding.

Control method applied to active-clamp flyback miniature photovoltaic grid-connected inverter device

The invention relates to a control method which can be applied to an active-clamp flyback miniature photovoltaic grid-connected inverter device. The active-clamp flyback miniature photovoltaic grid-connected inverter device comprises a flyback converter and a power frequency polarity conversion circuit. In the device, a current reference is used for controlling a flyback primary-side current peak value so that the device can output a half-wave sinusoidal current, and the output voltage is clamped by a grid voltage. When the instantaneous power is lower, a constant frequency current discontinuous mode in combined with a variable frequency current critical continuous mode is adopted in the flyback control method. When the flyback converter works in a variable frequency current critical discontinuous mode, an auxiliary switching tube can be conducted for a period of time when the secondary-side current of the flyback converter reaches zero, the conduction time can be accurately controlled by a digital chip, thus realizing the leakage inductance energy feedback and the soft switch of a master switching tube under the condition of wide-range output voltages and different instantaneous powers and greatly improving the efficiency under the condition of full loads.
Owner:ALTENERGY POWER SYST

On-line monitoring device of transformer winding state and monitoring method thereof

The invention discloses an on-line monitoring device of transformer winding state and a monitoring method thereof. The device is used for the on-line monitoring of transformer winding deformation and bad winding contact and comprises an information acquisition unit, a parameter identification unit, a parameter processing unit and a diagnosis monitoring strategy adjusting unit, wherein the information acquisition unit collects voltage and current information on the original side and the secondary side of the transformer in real time by a data channel; the parameter identification unit identifies the winding resistance and leakage inductance parameter of the winding state of a representation transformer by the real-time voltage and current information provided by the signal acquisition unit; the parameter identification unit calculates the deviation value of a parameter value obtained by analysis and identification and a parameter reference value and takes the deviation value as the characteristic quantity which is used for measuring the quality degree of the transformer winding state; the parameter processing unit and the identification unit ensure the real-time monitoring of the transformer winding state; the diagnosis monitoring strategy adjusting unit judges whether the winding has the defect of deformation or bad contact according to the deviation value of the parameter, and takes corresponding monitoring strategy adjusting scheme according to defect types and severity thereof; and the transformer directly stops operating when the defect is serious.
Owner:XI AN JIAOTONG UNIV +1

Parameter Identification Method of Asynchronous Motor Based on Adaptive Compensation

The invention discloses an adaptive-compensation-based asynchronous motor parameter recognition method, which belongs to the technical field of static parameter recognition of asynchronous motors and solves the problem of low universality of the conventional motor parameter recognition method. The method comprises the following steps of: recognizing stator resistance values of each phase of the motor, testing the motor by using a single-phase AC method to reconstruct the reference input voltage of each phase of the motor, performing Fourier transform on the reconstructed reference input voltage of each phase of the motor in a current cycle, and performing calculation to obtain real parts and virtual parts of fundamental waves of the reference input voltage of each phase of the motor; performing calculation to obtain error voltage between the reference input voltage and actual input voltage of each phase of the motor, and obtaining the real part and virtual part of the fundamental waveof the error voltage; and performing calculation to obtain the leakage inductance, rotor resistance and mutual inductance of each phase of the motor. The method is applied to the parameter recognition of the asynchronous motor.
Owner:哈尔滨同为电气股份有限公司 +1

Generator system for wind power generation and variable speed control method

InactiveCN101640423ASimplify Parallel CombinationAutomatically eliminate voltage pulsationSingle network parallel feeding arrangementsWind energy generationPhase currentsCapacitance
The invention discloses a generator system for wind power generation and a variable speed control method; the system comprises a permanent magnetic synchronous generator of which the electrical energyoutput is connected with a Vienna rectifier device, and is characterized in that a stator winding of the permanent magnetic synchronous generator comprises two sets of triphase windings with electrical degree difference of 180 degrees and unconnected neutral points thereof; the Vienna rectifier device comprises two Vienna rectifiers with identical structure, which are in parallel connection withthe DC side with a central point O connected with a DC bus capacitance midpoint; the AC side is connected with the two triphase windings of the generator respectively; a Boost inductance of the Viennarectifier is directly provided by the leakage inductance of the windings of the generator; each Vienna rectifier device is controlled by a DSP controller to maintain the balance of the DC bus voltageby the phase current and line voltage collected in the AC side and the bus voltage collected in the DC side; and the variable speed control of the generator is realized by collecting the rotating speed of a fan and the current wind speed.
Owner:XI AN JIAOTONG UNIV

Electrolytic capacitor-free LED driving power supply based on flyback converter leakage inductance energy utilization

The invention discloses an electrolytic capacitor-free LED driving power supply based on flyback converter leakage inductance energy utilization. The power supply comprises an alternative current input power supply, a bridge rectifier circuit, an auxiliary circuit, a main switch tube, a flyback transformer, a rectifier circuit, an output filter capacitor and an LED load. The power supply has the characteristics and advantages that firstly, as energy storage capacitance voltage of the auxiliary circuit is designed into a working mode that direct current voltage is overlapped with large pulse ripple voltage, not only is the dependence of the LED driving power supply on an electrolytic capacitor eliminated, but also flyback converter leakage inductance energy utilization is achieved; secondly, the flyback transformer works in a current interrupted mode, and input power factor correction is achieved; thirdly, due to adoption of the auxiliary circuit, the low frequency pulse power of input power pin and output power po can be balanced, and the constant current can be achieved to drive the LED load through coordination work of the auxiliary circuit and a main circuit.
Owner:SHANGHAI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products