Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

9673 results about "Magnetic circuit" patented technology

A magnetic circuit is made up of one or more closed loop paths containing a magnetic flux. The flux is usually generated by permanent magnets or electromagnets and confined to the path by magnetic cores consisting of ferromagnetic materials like iron, although there may be air gaps or other materials in the path. Magnetic circuits are employed to efficiently channel magnetic fields in many devices such as electric motors, generators, transformers, relays, lifting electromagnets, SQUIDs, galvanometers, and magnetic recording heads.

Compact serial-to-ethernet conversion port

The present invention relates to a serial-to-ethernet modular converter jack and a method of fabricating of the same. The serial-to-ethernet converter electronic components, including the control software stored in on-board memory, are miniaturized and housed entirely in an RJ-45 jack. The present invention is constructed of a shielded housing that defines an open front portion for a connector port. The housing of the present invention also includes a segregated interior chamber, which encases all of the electrical components necessary to complete a serial-to-ethernet conversion of data. Lead pins electrically connected to the circuitry within the interior chamber, protrude from the based of the connector jack providing for a means to mate the jack to a circuit board. First, second and third circuit boards collectively incorporate the serial-to-ethernet circuitry components. Both the first circuit board incorporating magnetic circuitry and the second circuit board incorporating control circuitry are positioned in generally horizontal parallel relation within the interior chamber. The second circuit board which defines opposed sides includes electronic components disposed upon the upper and lower of both sides of said second circuit board. The third circuit board, incorporating connections to the LEDs, is positioned generally perpendicular in relation to the first and second circuit boards and is structurally connected to said first and second circuit boards, additionally providing an electrical connection between the first and second boards. Alternative embodiments of the invention are disclosed and include various arrangement of the serial-to-ethernet circuitry within the interior chamber of the housing.
Owner:LANTRONIX

Cyclotron

The invention relates to a cyclotron which can produce a beam of accelerated charged particles that are intended for the irradiation of at least one target (200). The inventive cyclotron consists of a magnetic circuit which essentially comprises: an electromagnet with at least two poles (1, 1′), namely an upper pole (1) and a lower pole (1′), which are disposed symmetrically in relation to a mid-plane (110) which is perpendicular to the central axis (100) of the cyclotron and which are separated by a gap (120) containing the circulating charged particles and return flux (2) in order to close the aforementioned magnetic circuit; and a pair of main induction coils (5, 5′) which are used to create an essentially-constant main induction field in the gap between poles 1 and 1′. The invention is characterised in that it comprises means of centring the above-mentioned beam, consisting of at least one pair of bucking coils (6, 7) which are supplied by an electrical source (8) and which can modulate the intensity of the main induction field produced by the main coils (5, 5′), in order to increase the intensity of the induction field in a first area of the cyclotron and to reduce the intensity of the induction field in a second area of the cyclotron, which is diametrically opposed to the central axis (100) of the cyclotron.
Owner:ION BEAM APPL

Electrically isolated power and data coupling system suitable for portable and other equipment

An electrically isolated combined power and signal coupler is usable for a portable medical monitoring device attachable to a patient in a medical environment. A power coupling system transfers power between a power source and a powered device separated by a physical and electrical isolation barrier. The system comprises a power coupler including in a first device, a first section of a magnetic circuit including a first core section of magnetically permeable material of cross-sectional area substantially larger at an isolation barrier interface than within a first winding located on the first core section. The first section of magnetic circuit being suitable, in a docking mode, for positioning adjacent to a second section of magnetic circuit in a second device to form a completed magnetic circuit used to transfer power between said first and second device. The second section of magnetic circuit including a second core section with a second winding magnetically coupling with the first winding via the completed magnetic circuit in the docking mode for the power transfer. The first core section comprises at least one substantially planar core section at the isolation barrier interface for positioning adjacent to a corresponding substantially planar core section of said second section of magnetic circuit at the isolation barrier interface to form the completed magnetic circuit without a device containing the second section of magnetic circuit enveloping a significant portion of the substantially planar core section.
Owner:DRAGERWERK AG

Vibration actuator having magnetic circuit elastically supported by a spiral damper with increased compliance

A vibration actuator includes an electromechanical transducer having a magnetic circuit (1-4) and a driving coil (5), a support frame (9), and a damper (270) elastically supporting the magnetic circuit onto the support frame to flexibly damp the vibration of the magnetic circuit when a driving AC current is supplied to the coil (5). The damper (270) comprises inner and outer ring portions (271, 272) and a plurality of spiral spring portions (273) determined by a plurality of spiral slits (274, 275) formed in the damper. In order to reduce the spiral spring portion determined by the adjacent two spiral slits in its compliance, each of the spiral spring portions has an effective spring length determined by an effective angle (theta) which is determined as an angle (by angular degree) from an inner end of the inner spiral slit to an outer end of the outer spiral slit defining each respective spiral spring portion around a center of the damper. The effective angle is 55 angular degree or more. In a preferable example, the effective spring length is determined by a product (r.theta) of an average radius (r) value by the unit of "mm" and the effective angle (theta) value by unit of the angular degree. The effective spring length is selected to 320 or more, and preferably 400 or more.
Owner:TOKIN CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products