Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1378results about "Direct mass flowmeters" patented technology

Continuous liquid stream digital blending system

The present invention consists of a method and apparatus providing for the continuous stream blending, preferably on a mass ratio basis, of two or more liquids. Each individual liquid stream is synchronously dosed in precise mass ratio to a common mixing point. The flow of each stream is on-off or digital. Repeated mass ratio doses of defined and matching flow interval, referred to as synchronous digital flow, interspersed with a defined interval of no flow, constitutes digital flow at a net rate sufficient to meet or exceed some required take-away of the blended liquids. In one preferred embodiment, each dose stream flow is produced and measured by a four element apparatus preferably consisting of a servo motor and controller, a precision positive displacement pump, a Coriolis mass meter and a precision flow stream shut-off device. The servo motor and controller establish and control a periodic and intermittent flow rate necessary to displace a defined mass dose in a precisely defined flow interval. The flow interval is measured against a precision millisecond digital clock. The Coriolis mass meter is used only to totalize mass flow to define the desired mass dose during the defined digital flow interval. The flow stream shut-off device ensures precise delivery of the mass dose to the common mixing point. The flow rate of a stream is automatically adjusted by the control electronics until the required mass dose is delivered in the defined flow interval.
Owner:ODEN MACHINERY

Measuring transducer of vibration-type

ActiveUS7360451B2Improve density dependence of zero-pointWorking range of the measuring transducer can,Direct mass flowmetersDirect flow property measurementCouplingTransducer
A measuring transducer includes a transducer housing, as well as an internal part arranged in the transducer housing. The internal part includes at least one curved measuring tube vibrating, at least at times, during operation and serving for conveying the medium, as well as a counteroscillator affixed to the measuring tube on the inlet-side, accompanied by formation of a coupling zone, and to the measuring tube on the outlet-side, accompanied by the formation of a coupling zone. The internal part is held oscillatably in the transducer housing, at least by means of two connecting tube pieces, via which the measuring tube communicates during operation with the pipeline and which are so oriented with respect to one another, as well as with respect to an imaginary longitudinal axis of the measuring transducer, that the internal part can move during operation in the manner of a pendulum about the longitudinal axis. The measuring tube and the counteroscillator are additionally so embodied and so oriented with respect to one another that both a center of mass spaced from the imaginary longitudinal axis of the measuring tube, as well as also a center of mass of the counteroscillator spaced from the imaginary longitudinal axis, lie in a common region of the measuring transducer spanned by the imaginary longitudinal axis and the measuring tube, and that the center of mass of the measuring tube is spaced farther from the longitudinal axis than the center of mass of the counteroscillator.
Owner:ENDRESS HAUSER FLOWTEC AG

In-line measuring device

An inline measuring device includes a vibration-type measurement pickup having at least one measuring tube, which has a medium to be measured flowing through it during operation. The measuring tube is made by means of an exciter arrangement to execute, at least at times and / or at least in part, lateral oscillations and, at least at times and / or at least in part, torsional oscillations about an imaginary measuring tube longitudinal axis. The torsional oscillations alternate with the lateral oscillations or are, at times, superimposed thereon. Also included is a sensor arrangement for producing oscillation measurement signals correspondingly representing oscillations of the measuring tube. Measuring device electronics controlling the exciter arrangement generates, by means of at least one of the oscillation measurement signals and / or by means of the exciter current, at least at times, at least one measured value, which represents the at least one physical quantity to be measured. Additionally, the measuring device electronics also determines a first intermediate value, which corresponds to the lateral current component of the exciter current serving to maintain the lateral oscillations of the measuring tube and / or to a damping of the lateral oscillations of the measuring tube, as well as a second intermediate value, which corresponds to a torsional current component of the exciter current serving to maintain the torsional oscillations of the measuring tube and / or to a damping of the torsional oscillations of the measuring tube. With the goal of producing the measured value at high accuracy, such value is determined also taking into consideration these two intermediate values. The measured value obtained in this way is distinguished especially by high accuracy also in the case of media of two, or more, phases.
Owner:ENDRESS HAUSER FLOWTEC AG

Water Use Monitoring Apparatus

The present invention is a water use and/or a water energy use monitoring apparatus that is affixed to the hot and cold water supply piping for continuously (or on demand) monitoring displaying the water and water energy (hot vs. ambient) use within a residential or commercial building. A first wire or wireless means is incorporated to communicate with a remote display for viewing by the owner of a commercial building or occupier/resident of a home. A second optional wire or wireless means can be incorporated that can be monitored by civil, commercial, governmental or municipal operators or agencies, using a remote display and/or recorder means or by a secure wire or wireless communication network (e.g. cell phone, smart phone or other similar technology communication means). A third wireless means communicates water parameter data utilizing typical cell tower technology and/or mesh network technology. The water use monitor apparatus includes a power generation, a microprocessor, temperature and water flow sensors, optional water quality sensors, timing circuits, wireless circuitry, and a display means. A wired or wireless means is designed to electronically communicate water use, water energy use and/or water quality information to a remotely located display apparatus or typical cell phone, smart phones, or similar apparatus for convenient observation by a commercial, operator or occupier, resident, municipal or government agency.
Owner:REIN TECH INC

Measuring transducer of vibration-type

A measuring transducer includes a transducer housing, as well as an internal part arranged in the transducer housing. The internal part includes at least one curved measuring tube vibrating, at least at times, during operation and serving for conveying the medium, as well as a counteroscillator affixed to the measuring tube on the inlet-side, accompanied by formation of a coupling zone, and to the measuring tube on the outlet-side, accompanied by the formation of a coupling zone. The internal part is held oscillatably in the transducer housing, at least by means of two connecting tube pieces, via which the measuring tube communicates during operation with the pipeline and which are so oriented with respect to one another, as well as with respect to an imaginary longitudinal axis of the measuring transducer, that the internal part can move during operation in the manner of a pendulum about the longitudinal axis. The measuring tube and the counteroscillator are additionally so embodied and so oriented with respect to one another that both a center of mass spaced from the imaginary longitudinal axis of the measuring tube, as well as also a center of mass of the counteroscillator spaced from the imaginary longitudinal axis, lie in a common region of the measuring transducer spanned by the imaginary longitudinal axis and the measuring tube, and that the center of mass of the measuring tube is spaced farther from the longitudinal axis than the center of mass of the counteroscillator.
Owner:ENDRESS HAUSER FLOWTEC AG

Vibratory measurement transducer

The measurement transducer includes a transducer housing, which exhibits a plurality of natural oscillation modes, as well as at least one first flow tube held oscillatably in the transducer housing, vibrating at least at times, and conveying at least a portion of the medium to be measured. Additionally, the measurement transducer includes an electromechanical, especially electrodynamic, exciter arrangement acting on the at least one flow tube for producing and / or maintaining mechanical oscillations of the at least one flow tube, and a sensor arrangement reacting to movements of the flow tube, especially bending oscillations, for producing at least one oscillation measurement signal representing oscillations of the flow tube. Additionally, for improving the oscillation properties and, consequently, also the measurement accuracy of the measurement transducer, at least three coupling elements are provided for connecting the first and second flow tubes together at the inlet end, as well as at least three coupling elements for connecting the first and second flow tubes together at the outlet end. By using at least six coupling elements, it is possible to produce vibration-type measurement transducers of high measuring accuracy even at large nominal diameters of more than 150 mm, especially also while largely maintaining already established and proven forms of construction.
Owner:ENDRESS HAUSER FLOWTEC AG

Composite system, method for its manufacture, and measurement pickup using such a composite system

A composite system includes a first component, for instance of metal, and a second component extending at least partly through the first component along an imaginary longitudinal axis of the composite system. The second component contacts, with an at least partially curved, especially cylindrical, outer surface, an inner surface of the first component flushly such that the first component at least sectionally, at least partly, grips around the second component. Joining surfaces of the composite system, which are formed by the mutually contacting surfaces of the two components, are formed in such a manner that the two components exhibit contour portions in the area of these joining surfaces embodied as self-closing, peripheral surfaces. The contour portions fit at least partly into one another, to form a mechanical interference locking effective, at least in part, likewise in the direction of the longitudinal axis. Additionally, the second component, with its outer surface, contacts the inner surface of the first component flushly, such that the two components are mechanically tightly connected together also by means of a frictional locking effective at least partly in the direction of the longitudinal axis. Alternatively, or in supplementation thereof, at least one of the components is subjected at least partly to lastingly elastic, especially mixed plastic-elastic, deformations. The composite system is distinguished by a high pull-out strength, even in the presence of repeatedly arising vibrations in one of the components and is, therefore, especially suited also for use in a vibration-type measurement pickup.
Owner:ENDRESS HAUSER FLOWTEC AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products