Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

46564results about How to "Efficient removal" patented technology

Method for growing thin films

PCT No. PCT / FI95 / 00658 Sec. 371 Date Sep. 25, 1996 Sec. 102(e) Date Sep. 25, 1996 PCT Filed Nov. 28, 1995 PCT Pub. No. WO96 / 17107 PCT Pub. Date Jun. 6, 1996A method for growing a thin film on a substrate. A substrate is placed in a reaction space. The substrate is subjected to at least two vapor phase reactants in the form of vapor phase pulses, repeatedly and alternately. Gas within the reaction space is purged between two successive vapor phase pulses essentially entirely by use of a pump connected to the reaction space. The reaction space is purged between two successive vapor phase pulses such that less than 1% of the residual components from the first vapor phase pulse remains prior to the inflow of the second vapor phase pulse.

Sequential deposition/anneal film densification method

A silicon dioxide-based dielectric layer is formed on a substrate surface by a sequential deposition / anneal technique. The deposited layer thickness is insufficient to prevent substantially complete penetration of annealing process agents into the layer and migration of water out of the layer. The dielectric layer is then annealed, ideally at a moderate temperature, to remove water and thereby fully densify the film. The deposition and anneal processes are then repeated until a desired dielectric film thickness is achieved.

Method for inserting spinal implants and for securing a guard to the spine

Apparatus and a method of inserting spinal implants is disclosed in which an intervertebral space is first distracted, a hollow sleeve having teeth at one end is then driven into the vertebrae adjacent that disc space. A drill is then passed through the hollow sleeve removing disc and bone in preparation for receiving the spinal implant which is then inserted through the sleeve.

Method and device for tissue removal and for delivery of a therapeutic agent or bulking agent

According to an aspect of the present invention, a medical device is provided, which comprises the following: (a) a hollow elongate body (e.g., a elongate cylinder, such as a needle) having distal and proximal ends; and (b) a rotatable member comprising a tissue morselizer and an elongate shaft (e.g., an auger-like tissue-drilling bit). In the devices of the present invention, the elongate shaft is disposed within the hollow elongate body and cooperates with the hollow elongate body to (i) advance material (e.g., morselated tissue) toward the proximal end of the hollow elongate body when the shaft is rotated in a first direction, and (ii) advance material (e.g., a therapeutic agent and/or a bulking agent) toward the distal end of the hollow elongate body when the shaft is rotated in a second direction that is opposite the first direction. According to another aspect of the invention a method of treatment is provided that comprises: (a) inserting the a medical device like that above into the tissue of a patient; (b) morselizing and removing tissue from within the patient while rotating the shaft in a first direction, thereby creating a void within the patient; and (c) introducing a therapeutic agent and/or a bulking agent into the void.

Catalysis and micro-electrolysis combined technology for high-concentration refractory organic wastewater

The invention relates to a catalysis and micro-electrolysis combined technology for high-concentration refractory organic wastewater; the organic wastewater is collected to an adjusting tank and enters an air floatation tank for air floatation treatment to remove part of the organic matters after the adjustment of water volume and water quality; the scruff is collected or recovered; the wastewatergoes through Ph adjustment and then enters a catalytic iron-carbon and micro-electrolysis unit to improve the biochemical quality; the effluent goes through Ph adjustment and then enters a sedimentation tank; the effluent of the sedimentation tank adopts anoxic-aerobic biochemistry treatment to remove the organic matters and ammonia nitrogen and then is emitted after reaching the standard; and the filler of the catalytic iron-carbon and micro-electrolysis unit comprises iron, carbon and a catalyst, wherein the mass ratio of the iron, carbon and catalyst is 1: (0.3-1.5): (0.01-0.5). The invention can effectively improve the micro-electrolysis electrochemical reaction efficiency and the degrading capability to the organic matters, and reduce the wastewater treatment cost with convenient technological operation.

Method and Apparatus Using Electric Field for Improved Biological Assays

Disclosed are a method and apparatus that use an electric field for improved biological assays. The electric field is applied across a device having wells, which receive reactants, which carry a charge. The device thus uses a controllable voltage source between the first and second electrodes, which is controllable to provide a positive charge and a negative charge to a given electrode. By controlled use of the electric field charged species in a fluid in a fluid channel are directed into or out of the well by an electric field between the electrodes. The present method involves the transport of fluids, as in a microfluidic device, and the electric field-induced movement of reactive species according to various assay procedures, such as DNA sequencing, synthesis or the like.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products