Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

7137results about How to "Enhance the image" patented technology

Deployment system for an expandable device

The present invention is directed to a deployment system for an endoluminal device. The deployment system includes a confining sheath placed around a compacted endoluminal device. A deployment line is provided in the system that is an integral extension of the sheath. As the deployment line is actuated, the sheath retracts from around the compacted endoluminal device. As the sheath retracts from around the endoluminal device, material from the sheath may be converted into deployment line. Once the sheath is retracted from around the compacted endoluminal device, the endoluminal device expands in configuration and repairs vascular or cardiac structures of an implant recipient. Any remaining sheath material is removed from the implantation site along with the deployment line. The deployment system also includes an endo-prosthesis mounting member placed between the endoluminal device and an underlying catheter. The endo-prosthesis mounting member serves to cushion and retain the endoluminal device when constrained by the sheath and may assist in expansion of the endoluminal device when unconstrained by the sheath. The present invention is also directed to a deployment system having a deployment assembly that simultaneously expands an endo-prosthesis mounting member while removing a sheath from an expandable medical device.
Owner:WL GORE & ASSOC INC

Guided cardiac ablation catheters

Guided ablation instruments are disclosed for creating lesions in tissue, especially cardiac tissue for treatment of arrhythmias, including atrial fibrillation. In one aspect of the invention, a percutaneous catheter is disclosed with an endoscope positionable in the instrument's distal end region to obtain an image. The image allows the clinician to determine whether contact has been achieved (or blood has been cleared from an ablative energy transmission path) before ablation begins or while ablation is occurring. In one embodiment, percutaneous ablation catheters are disclosed having at least one central lumen and one or more balloon structures at the distal end region of the instrument. Also disposed in the distal end region are an illuminating light source and an endoscope capable of collecting sufficient light to relay an image to the user. The instruments can further include an ablation element. The ablation element can be a contact ablation element, or a radiant energy emitter, which is preferably independently positionable within the lumen of the instrument and adapted to project ablative energy through a transmissive region of the instrument body (and/or balloon) to a target tissue site proximate to the pulmonary veins. The energy can delivered without the need for contact between the energy emitter and the target tissue so long as a clear transmission pathway is established. The endoscope element of the instrument allows the clinician to determine the position of the instrument and, if radiant energy is to be employed, see if such a pathway is clear. Moreover, because the position of the radiant energy emitter can be varied, endoscopic guidance permits the clinician to select a desired location and dose for the lesion.
Owner:CARDIOFOCUS INC

System and method for radar-assisted catheter guidance and control

InactiveUS20050096589A1Less trainingMinimizing and eliminating useEndoscopesMedical devicesRadar systemsGuidance control
A Catheter Guidance Control and Imaging (CGCI) system whereby a magnetic tip attached to a surgical tool is detected, displayed and influenced positionally so as to allow diagnostic and therapeutic procedures to be performed is described. The tools that can be so equipped include catheters, guidewires, and secondary tools such as lasers and balloons. The magnetic tip performs two functions. First, it allows the position and orientation of the tip to be determined by using a radar system such as, for example, a radar range finder or radar imaging system. Incorporating the radar system allows the CGCI apparatus to detect accurately the position, orientation and rotation of the surgical tool embedded in a patient during surgery. In one embodiment, the image generated by the radar is displayed with the operating room imagery equipment such as, for example, X-ray, Fluoroscopy, Ultrasound, MRI, CAT-Scan, PET-Scan, etc. In one embodiment, the image is synchronized with the aid of fiduciary markers located by a 6-Degrees of Freedom (6-DOF) sensor. The CGCI apparatus combined with the radar and the 6-DOF sensor allows the tool tip to be pulled, pushed, turned, and forcefully held in the desired position by applying an appropriate magnetic field external to the patient's body. A virtual representation of the magnetic tip serves as an operator control. This control possesses a one-to-one positional relationship with the magnetic tip inside the patient's body. Additionally, this control provides tactile feedback to the operator's hands in the appropriate axis or axes if the magnetic tip encounters an obstacle. The output of this control combined with the magnetic tip position and orientation feedback allows a servo system to control the external magnetic field.
Owner:NEURO KINESIS CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products