Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

585results about "Signal generator with multiple pick-up device" patented technology

Camera phone using multiple lenses and image sensors to provide an extended zoom range

A camera phone includes a phone stage for generating voice signals, a first image sensor for generating a first sensor output, a first fixed focal length wide angle lens for forming a first image of the scene on the first image sensor, a second image sensor for generating a second sensor output, and a second fixed focal length telephoto lens pointing in the same direction as the first lens and forming a second image of the same scene on the second image sensor. A control element selects either the first sensor output from the first image sensor or the second sensor output from the second image sensor. A processing section produces the output image signals from the selected sensor output, and a cellular stage processes the image and voice signals for transmission over a cellular network.
Owner:MONUMENT PEAK VENTURES LLC

Apparatus for multiple camera devices and method of operating same

There are many, many inventions described herein. In one aspect, what is disclosed is a digital camera including a plurality of arrays of photo detectors, including a first array of photo detectors to sample an intensity of light of a first wavelength and a second array of photo detectors to sample an intensity of light of a second wavelength. The digital camera further may also include a first lens disposed in an optical path of the first array of photo detectors, wherein the first lens includes a predetermined optical response to the light of the first wavelength, and a second lens disposed in with an optical path of the second array of photo detectors wherein the second lens includes a predetermined optical response to the light of the second wavelength. In addition, the digital camera may include signal processing circuitry, coupled to the first and second arrays of photo detectors, to generate a composite image using (i) data which is representative of the intensity of light sampled by the first array of photo detectors, and (ii) data which is representative of the intensity of light sampled by the second array of photo detectors; wherein the first array of photo detectors, the second array of photo detectors, and the signal processing circuitry are integrated on or in the same semiconductor substrate.
Owner:NEWPORT IMAGING CORP

Apparatus for multiple camera devices and method of operating same

There are many, many inventions described herein. In one aspect, what is disclosed is a digital camera including a plurality of arrays of photo detectors, including a first array of photo detectors to sample an intensity of light of a first wavelength and a second array of photo detectors to sample an intensity of light of a second wavelength. The digital camera further may also include a first lens disposed in an optical path of the first array of photo detectors, wherein the first lens includes a predetermined optical response to the light of the first wavelength, and a second lens disposed in with an optical path of the second array of photo detectors wherein the second lens includes a predetermined optical response to the light of the second wavelength. In addition, the digital camera may include signal processing circuitry, coupled to the first and second arrays of photo detectors, to generate a composite image using (i) data which is representative of the intensity of light sampled by the first array of photo detectors, and (ii) data which is representative of the intensity of light sampled by the second array of photo detectors; wherein the first array of photo detectors, the second array of photo detectors, and the signal processing circuitry are integrated on or in the same semiconductor substrate.
Owner:INTELLECTUAL VENTURES II

Method and apparatus for operating a dual lens camera to augment an image

An electronic camera for producing an output image of a scene from a captured image signal includes a first imaging stage comprising a first image sensor for generating a first sensor output and a first lens for forming a first image of the scene on the first image sensor, and a second imaging stage comprising a second image sensor for generating a second sensor output and a second lens for forming a second image of the scene on the second image sensor. The sensor output from the first imaging stage is used as a primary output image for forming the captured image signal and the sensor output from the second imaging stage is used as a secondary output image for modifying the primary output image, thereby generating an enhanced, captured image signal.
Owner:MONUMENT PEAK VENTURES LLC

Camera using multiple lenses and image sensors in a rangefinder configuration to provide a range map

An electronic camera for producing an output image of a scene from a captured image signal includes a first imaging stage comprising a first image sensor for generating a first sensor output and a first lens for forming a first image of the scene on the first image sensor, and a second imaging stage comprising a second image sensor for generating a second sensor output and a second lens for forming a second image of the scene on the second image sensor, where the lenses have different focal lengths. A processing stage uses the sensor output from one of the imaging stages as the captured image signal and uses the images from both imaging stages to generate a range map identifying distances to the different portions of the scene.
Owner:MONUMENT PEAK VENTURES LLC

Digital imaging system and method using multiple digital image sensors to produce large high-resolution gapless mosaic images

A digital imaging system and method using multiple cameras arranged and aligned to create a much larger virtual image sensor array. Each camera has a lens with an optical axis aligned parallel to the optical axes of the other camera lenses, and a digital image sensor array with one or more non-contiguous pixelated sensors. The non-contiguous sensor arrays are spatially arranged relative to their respective optical axes so that each sensor images a portion of a target region that is substantially different from other portions of the target region imaged by other sensors, and preferably overlaps adjacent portions imaged by the other sensors. In this manner, the portions imaged by one set of sensors completely fill the image gaps found between other portions imaged by other sets of sensors, so that a seamless mosaic image of the target region may be produced.
Owner:LAWRENCE LIVERMORE NAT SECURITY LLC

Self-calibrating, digital, large format camera with single or multiple detector arrays and single or multiple optical systems

Large format, digital camera systems (10, 100, 150, 250, 310) expose single detector arrays 20 with multiple lens systems (12, 14, 16, 18) or multiple detector arrays (104, 106, 108, 110, 112, 114, 116, 118, 120, 152, 162, 172, 182, 252, 262, 272, 282, 322, 324) with one or more single lens systems (156, 166, 176, 186) to acquire sub-images of overlapping sub-areas of large area objects. The sub-images are stitched together to form a large format, digital, macro-image (80, 230″, 236″, 238″, 240″), which can be colored. Dampened camera carrier (400) and accelerometer (404) signals with double-rate digital signal processing (306, 308) are used.
Owner:VEXCEL IMAGING US INC

Compound-eye imaging device

A compound-eye imaging device comprises an imaging device body having 9 optical lenses and a solid-state imaging element for imaging unit images formed by the optical lenses. Assuming that the combination of each of the optical lenses with a corresponding divided area of the solid-state imaging element to image each of the corresponding unit images is an imaging unit, thereby forming multiple imaging units, the respective imaging units have randomly different optical imaging conditions. For example, the focal lengths of the 9 optical lenses are set to have random values in which the optical lenses are arranged to have random distances between adjacent ones thereof in a direction parallel to the major surface of the solid-state imaging element. This compound-eye imaging device substantially prevents unit images formed by respective imaging units from being the same, making it possible to easily increase the definition of a reconstructed image.
Owner:FUNAI ELECTRIC CO LTD

Digital camera using multiple image sensors to provide improved temporal sampling

A method and apparatus for capturing image data from multiple image sensors and generating an output image sequence are disclosed. The multiple image sensors capture data with one or more different characteristics, such as: staggered exposure periods, different length exposure periods, different frame rates, different spatial resolution, different lens systems, and different focal lengths. The data from multiple image sensors is processed and interleaved to generate an improved output motion sequence relative to an output motion sequence generated from an a single equivalent image sensor.
Owner:MONUMENT PEAK VENTURES LLC

Digital camera with integrated infrared (IR) response

There are many, many inventions described herein. In one aspect, what is disclosed is a digital camera including a plurality of arrays of photo detectors, including a first array of photo detectors to sample an intensity of light of a first wavelength and a second array of photo detectors to sample an intensity of light of a second wavelength. The digital camera further may also include a first lens disposed in an optical path of the first array of photo detectors, wherein the first lens includes a predetermined optical response to the light of the first wavelength, and a second lens disposed in with an optical path of the second array of photo detectors wherein the second lens includes a predetermined optical response to the light of the second wavelength. In addition, the digital camera may include signal processing circuitry, coupled to the first and second arrays of photo detectors, to generate a composite image using (i) data which is representative of the intensity of light sampled by the first array of photo detectors, and (ii) data which is representative of the intensity of light sampled by the second array of photo detectors; wherein the first array of photo detectors, the second array of photo detectors, and the signal processing circuitry are integrated on or in the same semiconductor substrate.
Owner:INTELLECTUAL VENTURES II

Configurable pixel array system and method

Present embodiments relate to techniques for capturing images. One embodiment may include an image sensor, comprising a substrate, a first pixel cell array disposed on the substrate, a first photographic lens arranged to focus light onto the first pixel cell array, a second pixel cell array disposed on the substrate, a second photographic lens arranged to focus light onto the second pixel cell array, and an image coordination circuit configured to coordinate the first array and lens with the second array and lens to provide an image. The first pixel cell array and the first photographic lens may be configured to cooperate to capture a first image of a scene, and the second pixel cell array and the second photographic lens may be configured to cooperate to capture a second image of the scene.
Owner:SEMICON COMPONENTS IND LLC

Self-calibrating, digital, large format camera with single or mulitiple detector arrays and single or multiple optical systems

Large format, digital camera systems (10, 100, 150, 250, 310) expose single detector arrays 20 with multiple lens systems (12, 14, 16, 18) or multiple detector arrays (104, 106, 108, 110, 112, 114, 116, 118, 120, 152, 162, 172, 182, 252, 262, 272, 282, 322, 324) with one or more single lens systems (156, 166, 176, 186) to acquire sub-images of overlapping sub-areas of large area objects. The sub-images are stitched together to form a large format, digital, macro-image (80, 230'', 236'', 238'', 240''), which can be colored. Dampened camera carrier (400) and accelerometer (404) signals with double-rate digital signal processing (306, 308) are used.
Owner:VEXCEL IMAGING US INC

Augmented stereoscopic visualization for a surgical robot using a captured fluorescence image and captured stereoscopic visible images

An illumination channel, a stereoscopic optical channel and another optical channel are held and positioned by a robotic surgical system. A first capture unit captures a stereoscopic visible image from the first light from the stereoscopic optical channel while a second capture unit captures a fluorescence image from the second light from the other optical channel. An intelligent image processing system receives the captured stereoscopic visible image and the captured fluorescence image and generates a stereoscopic pair of fluorescence images. An augmented stereoscopic display system outputs a real-time stereoscopic image comprising a three-dimensional presentation of a blend of the stereoscopic visible image and the stereoscopic pair of fluorescence images.
Owner:INTUITIVE SURGICAL

Electro-optical foveated imaging and tracking system

Conventional electro-optical imaging systems can not achieve wide field of view (FOV) and high spatial resolution imaging simultaneously due to format size limitations of image sensor arrays. To implement wide field of regard imaging with high resolution, mechanical scanning mechanisms are typically used. Still, sensor data processing and communication speed is constrained due to large amount of data if large format image sensor arrays are used. This invention describes an electro-optical imaging system that achieves wide FOV global imaging for suspect object detection and local high resolution for object recognition and tracking. It mimics foveated imaging property of human eyes. There is no mechanical scanning for changing the region of interest (ROI). Two relatively small format image sensor arrays are used to respectively acquire global low resolution image and local high resolution image. The ROI is detected and located by analysis of the global image. A lens array along with an electronically addressed switch array and a magnification lens is used to pick out and magnify the local image. The global image and local image are processed by the processor, and can be fused for display. Three embodiments of the invention are described.
Owner:NEW SPAN OPTO TECH

Color image sensor with imaging elements imaging on respective regions of sensor elements

The color image sensor generates an image signal representing a subject. The color image sensor has a light sensor and imaging elements arranged to form images of the subject in light of different colors on respective regions of the light sensor. The light sensor includes sensor elements and is operable to generate the image signal in response to light incident on it.
Owner:MICRON TECH INC

Digital imaging system, plenoptic optical device and image data processing method

A digital imaging system being configured for synthesizing an image of a plenoptic optical device, comprises a photosensor array comprising a plurality of photosensors arranged in a predetermined image plane, and a microlens array comprising a plurality of microlenses arranged for directing light from an object to the photosensor array, wherein the photosensor array and the microlens array are arranged with a predetermined distance, the microlenses have different focal lengths varying over the microlens array, and the image plane of the photosensor array is arranged such that the distance between the photosensor array and the microlens array does not equal the microlenses' focal lengths. Furthermore, a plenoptic optical device including the digital imaging system and a method for processing image data collected with the digital imaging system are described.
Owner:RAYTRIX

Method for generating panoramic video according to multi-visual angle video stream

The invention discloses a method for forming a panoramic video based on multi-view video streaming, which comprises the following steps: 1) using a plurality of cameras to capture video with an omnidirectional coverage at different viewing angles; 2) establishing one-to-one correspondence of synchronous frames in each video streaming; 3) correcting each video streaming independently by the camera's calibration; 4) panoramically joining a group of the synchronous video frames and calculating the joint parameter of each frame; 5) applying the jointed parameter to the joint of each frame in each video streaming to obtain a panoramic video formed by the panoramic frames. Compared with the prior method that uses a concave lens or a convex lens to focus lights and then reduce into a panoramic video, the invention has the advantages of low cost, no picture distortion, and suitability for the shooting during movement.
Owner:ZHEJIANG UNIV

Multi-eye image pickup device

A multi-eye camera includes imaging units which are detachably attached to a camera main body. The camera main body has a concave container portion to which at most four imaging units in either vertical or horizontal orientation can be attached at the same time. A length between the optical axes of two imaging units is denoted by a base length R. Attachment positions and orientations of the imaging units can be changed according to a distance from the multi-eye camera to a subject for being captured, so that the length of the base length R is optimized for the subject.
Owner:FUJIFILM CORP

Camera module with dual lens modules and image sensors

A camera module includes first and second lens modules, a first holder receiving the first lens module therein, a second holder receiving the second lens modules therein, a circuit board arranged between the first and second holders, first and second image sensors arranged on opposite surfaces of the circuit board, and first and second reflecting members. The first image sensor is received in the first holder. The second image sensor is received in the second holder. The first reflecting member is arranged in the first holder and has a first reflecting surface for reflecting and directing the light converged by the first lens module to the first image sensor. The second reflecting member is arranged in the second holder and has a second reflecting surface for reflecting and directing the light converged by the second lens module to the second image sensor.
Owner:HON HAI PRECISION IND CO LTD

Methods and apparatus for demosaicing images with highly correlated color channels

In one embodiment of the invention, an apparatus is disclosed including an image sensor, a color filter array, and an image processor. The image sensor has an active area with a matrix of camera pixels. The color filter array is in optical alignment over the matrix of the camera pixels. The color filter array assigns alternating single colors to each camera pixel. The image processor receives the camera pixels and includes a correlation detector to detect spatial correlation of color information between pairs of colors in the pixel data captured by the camera pixels. The correlation detector further controls demosaicing of the camera pixels into full color pixels with improved resolution. The apparatus may further include demosaicing logic to demosaic the camera pixels into the full color pixels with improved resolution in response to the spatial correlation of the color information between pairs of colors.
Owner:INTUITIVE SURGICAL OPERATIONS INC

Image pickup apparatus

An image pickup apparatus includes an image-pickup lens having an aperture diaphragm, an image-pickup element that has a color filter which is periodically allocated colors in units of a predetermined unit array and that generates picked-up image data including pixel data of colors using received light, the color filter being adjacent to a light receiving surface, a microlens array unit that is arranged on an image forming surface of the image-pickup lens and whose microlenses are each allocated a plurality of pixels of the image-pickup element, and an image processing unit that performs image processing on the picked-up image data generated by the image-pickup element. The image processing unit includes a parallax component image generation unit that generates a plurality of parallax component images and an interpolation processing unit that performs color interpolation processing for each of the parallax component images.
Owner:SONY CORP

Optical element to reshape light with color and brightness uniformity

A light valve such as an active matrix LCD between crossed polarizers, utilizing, for instance, individual transistors to control each "pixel area" of the LCD and storage elements to store video signal data for each pixel, with optically shielded "dead spaces" between pixels to eliminate electric field cross-talk and non-information-bearing light bleed-through, is illuminated with a bright independent light source which creates a video image projected via specialized projection optics onto an internal or external screen without distortions, regardless of the angle of projection onto the screen. Use of heat sinks, IR reflective coatings, heat absorbing optics, optional fluid and a thermistor controlled pixel transistor bias voltage injection servo circuit stabilizes image performance, maintaining accurate color and contrast levels as the LCD changes temperature. In one embodiment of the invention, use of a multi-color LCD with a stepped cavity, producing different thicknesses of LCD for the different wavelengths that pass through it, allows a linear correspondence between the wavelengths passing through the LCD to produce true black, high contrast and CRT-like color rendition. A dichroic mirror arrangement is used to overlap differently colored pixels in the projected image. Use of striped mirrors duplicate pixels, where necessary, eliminating spaces between pixels, creating a continuous image with no apparent stripes or dots. A special venetian-blind type of screen is also disclosed and methods for using the system to view three-dimensional video are also explained.
Owner:DOLGOFF GENE

Handheld Electronic Device, Dual Image Capturing Method Applying for Thereof, and Computer Program Production for Load into Thereof

A handheld electronic device includes a first lens module, a second lens module, an input unit and a control unit. The first lens module and the second lens module are respectively disposed on the handheld electronic device. The first lens module captures scenes in a first image capturing boundary. The second lens module captures scenes in a second image capturing boundary, which is different from the first image capturing boundary. The input unit is used for receiving a user input for capturing images. When the input unit receives the user input, the control unit controls the first lens module and the second lens module to captures a first image and a second image respectively at the same time.
Owner:HTC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products