Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3816 results about "High contrast" patented technology

Polarizing element, optical element, and liquid crystal display

A polarizing element and an optical element are provided that can form a semitransparent or other type of liquid crystal display which is excellent in contrast in a reflective display mode and also is excellent in luminance in a transmissive display mode utilizing a reflective polarizing plate. A polarizing element comprising a reflective polarizing plate and an absorptive polarizer, wherein the reflective polarizing plate separates an incident natural light into a reflected light and a transmitted light each comprising a polarized light, and the absorptive polarizer is arranged on one side of the reflective polarizing plate so as to transmit a polarized light comprising the transmitted light. Also, an optical element comprising this polarizing element; and (a) a quarter wavelength plate or (b) an absorptive polarizing plate and a quarter wavelength plate arranged on the side of the absorptive polarizer in the polarizing element, wherein the absorptive polarizing plate has an axial relation so as to transmit a polarized light transmitted through the absorptive polarizer. While accomplishing the function as a semitransparent reflective polarizer utilizing the reflective polarizing plate, in a transmissive display mode, high luminance display can be achieved with high contrast, and in a reflective display mode, unnecessary reflected light (returned light) of an external light can be absorbed and cut off efficiently.
Owner:NITTO DENKO CORP

Holographic fingerprint device

InactiveUS6061463AIncrease contrastLittle and no aberration and distortionCharacter and pattern recognitionImage detectionIntensity modulation
PCT No. PCT/US95/02155 Sec. 371 Date Dec. 22, 1997 Sec. 102(e) Date Dec. 22, 1997 PCT Filed Feb. 21, 1995 PCT Pub. No. WO95/22804 PCT Pub. Date Aug. 24, 1995A method and ultra-compact system has been developed for illuminating and detecting the surface topography of an object such as the finger (4) of an individual. The system (8) is capable of producing high-contrast images which can be electronically transmitted in real-time, or stored using electronic or photographic recording devices. Light traveling within a light transmitting substrate (2) is redirected by a slanted-fringed light diffractive grating preferably embodied within a volume hologram (3). The volume hologram (3), either of the reflection or transmission type, is attached to the light transmitting substrate (2). and functions to diffract light striking thereupon and illuminate an object having topographical surface structure. After being spatially and intensity modulated in accordance with topographical details of the illuminated object, the insulated light passes back through the light transmitting substrate (2) and the volume hologram (3), onto an image detection array. for subsequent analysis. Each of the disclosed embodiments has a compact geometry suitable for use in diverse object identification applications.
Owner:KREMEN MR STANLEY H

Multi-parameter X-ray computed tomography

The present invention relates to the field of x-ray imaging. More particularly, embodiments of the invention relate to methods, systems, and apparatus for imaging, which can be used in a wide range of applications, including medical imaging, security screening, and industrial non-destructive testing to name a few. Specifically provided as embodiments of the invention are systems for x-ray imaging comprising: a) a first collimator-and-detector assembly having a first operable configuration to provide at least one first dataset comprising primary x-ray signals as a majority component of its data capable of being presented as a first image of an object subjected to x-ray imaging; b) a second collimator-and-detector assembly having a second operable configuration or wherein the first collimator-and-detector assembly is adjustable to a second configuration to provide at least one second dataset comprising primary and dark-field x-ray signals as a majority component of its data capable of being presented as a second image of the object; and c) a computer operably coupled with the collimator-and-detector assemblies comprising a computer readable medium embedded with processing means for combining the first dataset and the second dataset to extract the dark-field x-ray signals and produce a target image having higher contrast quality than the images based on the first or second dataset alone. Such systems can be configured to comprise at least two collimator-and-detector assemblies or configurations differing with respect to collimator height, collimator aperture, imaging geometry, or distance between an object subjected to the imaging and the collimator-and-detector assembly.
Owner:VIRGINIA TECH INTPROP INC

High contrast optoacoustical imaging using nonoparticles

InactiveUS20050175540A1Maximize both the optical absorbanceIncrease the effective absorbanceUltrasonic/sonic/infrasonic diagnosticsSurgeryNanoparticleSpherical shaped
A method of enhancing detection for a specific object in a body. A nanoparticulate is administered to the body for location in an area to be explored for detection of the object, if present. The nanoparticulate is at least partially metallic, has a formed non-spherical shape having a minimal characteristic dimension in the range from about 1 to about 3000 nanometers, and has a formed composition capable of producing thermal pressure either in the nanoparticulate or in the object greater than the object could produce in the absence of the nanoparticulate. Electromagnetic radiation is directed into the body. The electromagnetic radiation has a specific wavelength or spectrum of wavelengths in the range from 300 nm to 300 mm selected so that the wavelength or wavelength spectrum is longer by a factor of at least 3 than the minimum characteristic dimension of the nanoparticulate. The nanoparticulate absorbs the electromagnetic radiation more than would one or more non-aggregated spherically shaped particles of the same total volume with a composition identical to the nanoparticulate. The nanoparticulate produces an enhanced optoacoustic signal resulting from the absorption that is received and converted into an electronic signal and presented for assessment of the at least one parameter by a human or a machine
Owner:SENO MEDICAL INSTR

Pixel driving circuit and method of active organic electroluminescent display

InactiveCN101996579ACompensation for brightness non-uniformityAchieve all blackStatic indicating devicesCapacitanceHemt circuits
The invention discloses pixel driving circuit and method of an active organic electroluminescent display. The pixel driving circuit comprises a driving transistor, four switch transistors, a coupling capacitor, a storage capacitor and a light-emitting diode, wherein a drain electrode of the first transistor is connected with a data wire, a grid electrode of the first transistor is connected with a first scanning control wire, and a source electrode of the first transistor is connected with the C end of the coupling capacitor; a drain electrode of the second transistor is connected with source electrodes of the third transistor and the fourth transistor, a grid electrode of the second transistor is connected with the A ends of the coupling capacitor and the storage capacitor and a drain electrode of the third transistor, and a source electrode of the second transistor is connected with a drain electrode of the fifth transistor and the B end of the storage capacitor and is grounded through the organic light-emitting diode; a grid electrode of the third transistor is connected with a second scanning control wire; a drain electrode of the fourth transistor is connected with a power wire, and a grid electrode of the fourth transistor is connected with a light-emitting control wire; and a grid electrode of the fifth transistor is connected with the first scanning control wire, and a source electrode is grounded. The invention can effectively compensate the unevenness of threshold voltages of the transistors and the degradation of a start voltage of the OLED (Organic Light Emitting Diode), ensures that the brightness of an image displayed by the OLED is even and realizes high contrast.
Owner:SOUTH CHINA UNIV OF TECH

Optical element to reshape light with color and brightness uniformity

A light valve such as an active matrix LCD between crossed polarizers, utilizing, for instance, individual transistors to control each "pixel area" of the LCD and storage elements to store video signal data for each pixel, with optically shielded "dead spaces" between pixels to eliminate electric field cross-talk and non-information-bearing light bleed-through, is illuminated with a bright independent light source which creates a video image projected via specialized projection optics onto an internal or external screen without distortions, regardless of the angle of projection onto the screen. Use of heat sinks, IR reflective coatings, heat absorbing optics, optional fluid and a thermistor controlled pixel transistor bias voltage injection servo circuit stabilizes image performance, maintaining accurate color and contrast levels as the LCD changes temperature. In one embodiment of the invention, use of a multi-color LCD with a stepped cavity, producing different thicknesses of LCD for the different wavelengths that pass through it, allows a linear correspondence between the wavelengths passing through the LCD to produce true black, high contrast and CRT-like color rendition. A dichroic mirror arrangement is used to overlap differently colored pixels in the projected image. Use of striped mirrors duplicate pixels, where necessary, eliminating spaces between pixels, creating a continuous image with no apparent stripes or dots. A special venetian-blind type of screen is also disclosed and methods for using the system to view three-dimensional video are also explained.
Owner:DOLGOFF GENE

Vehicle license plate imaging and reading system for day and night

ActiveUS7016518B2Avoid sensor overload headlightAvoid reflected glareOptical rangefindersRoad vehicles traffic controlLicense numberInfrared
This invention provides an infrared illuminator and camera system for imaging of auto vehicle license plates. The system works in ambient light conditions, ranging from bright sunlight, to dim light, to dark, to zero ambient light. It yields high-contrast imaging of the letters and numbers on retro-reflective license plates. The images of the license letter and number combinations can be read manually by a remote operator. They can be converted to text format with optical character recognition computer hardware and software. The text data can then be compared to data files listing license numbers to provide further data about the owner of a licensed vehicle. A decision can be made quickly about whether to allow a vehicle to proceed through a gate, or whether to take other action. The system uses a mono camera that is enhanced for infrared sensitivity and combined with a high power infrared illuminator to maximize range at night, and with shutter speeds set up to capture clear license plate pictures even with fast moving vehicles and even with their headlights on and interfering with human observation of the license plates. Optical filtering to pass infrared in the range of the illuminator and to reduce light outside this range, combines with a lens set up, to avoid vertical smear and sensor overload caused by headlights at night and by highlight reflected glare from the sun in daytime.
Owner:EXTREME CCTV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products