Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

34731 results about "Light guide" patented technology

Endoscope

An endoscope includes a slender insertion section of which the distal portion incorporates an image capturing device, and the back end of this insertion section is provided with an operating section to be gripped. A cable section is provided wherein a light guide cable for transmitting illumination light, and a signal cable connected to the image capturing device are integrally or separately extended from the operating section, and the connector of the edge portion of the cable section is freely detachably mounted to each of a light source device and a signal processing device. A mounting / detaching portion for freely detachably connecting a first unit serving as an insertion section side and a second unit serving as a cable section side is provided around between the distal end of the operating section and the proximal end thereof.
Owner:OLYMPUS CORP

Lightguide tile modules and modular lighting system

A modular illumination system includes light emitting tile modules, each module comprising a light guide substrate, at least one source of illumination optically coupled to a light guiding substrate and interconnection means to connect one light emitting tile module to another light emitting tile module. The interconnection means may include mechanical and / or electrical elements. A plurality of modules may be connected to create an extended continuous extended illuminating system without significant gaps or seams. In one embodiment, the light guiding substrate of one module extends over the source of illumination of an adjacent module. In a further embodiment, the light guiding substrate may be textured to create a patterned area with higher light extraction. In a further embodiment, the source of illumination may be included in a separate electrical member. The illumination sources may include LEDs directed into an edge of the light guiding substrate.
Owner:RUDISILL CHARLES A

Touch panel, display device provided with touch panel and electronic equipment provided with display device

A touch panel using an optical sensor has a simple construction and can accurately detect an input position. An illuminating lights emitted from illuminating means are turned into lights having a high directivity in an X-axis direction and in a Y-axis direction of the prism lens sheet and thereafter enter from side faces of a light guide panel as incident lights. The incident lights advance in the inside of the light guide panel toward opposite side faces while being subjected to a total reflection and are received by the optical sensor arrays. When an input pen or a fingertip touches a surface of the light guide panel, the lights are refracted or absorbed at a touched position and hence, a quantity of received lights at the optical sensor arrays is reduced.
Owner:SEMICON ENERGY LAB CO LTD

Display apparatus with optical cavities

A display includes an array of light modulators that define a display plane, a light guide and front- and rear-facing reflective surfaces. The light guide includes a plurality of geometric light redirectors, and at least 50% of the light guide's rear surface is parallel to the display plane. The rear-facing reflective surface is parallel to the display plane and includes a plurality of apertures.
Owner:SNAPTRACK

Enhanced LCD backlight

The present invention provides an improved light guide with inherently more flexibility for display system designers and higher optical efficiency. By using a light guide containing substantially aligned non-spherical particles, more efficient control of the light scattering can be achieved. One or more regions containing ellipsoidal particles may be used and the particle sizes may vary between 2 and 100 microns in the smaller dimension. The light scattering regions may be substantially orthogonal in their axis of alignment. Alternatively, one or more asymmetrically scattering films can be used in combination with a backlight light guide and a reflector to produce an efficient backlight system. The light guides may be manufactured by embossing, stamping, or compression molding a light guide in a suitable light guide material containing asymmetric particles substantially aligned in one direction. The light scattering light guide or non-scattering light guide may be used with one or more light sources, collimating films or symmetric or asymmetric scattering films to produce an efficient backlight that can be combined with a liquid crystal display or other transmissive display. By maintaining more control over the scattering, the efficiency of the recycling of light by using reflective polarizers can also be increased.
Owner:MASSACHUSETTS DEV FINANCE AGENCY

Light-guiding devices and monitoring devices incorporating same

A monitoring device configured to be attached to the ear of a person includes a base, an earbud housing extending outwardly from the base that is configured to be positioned within an ear of a subject, and a cover surrounding the earbud housing. The base includes a speaker, an optical emitter, and an optical detector. The cover includes light transmissive material that is in optical communication with the optical emitter and the optical detector and serves as a light guide to deliver light from the optical emitter into the ear canal of the subject wearing the device at one or more predetermined locations and to collect light external to the earbud housing and deliver the collected light to the optical detector.
Owner:VALENCELL INC

Backlight unit and liquid crystal display device using the same

Light emitted in side surface directions from side-emitting red, green, and blue LEDs which are arranged on an LED array substrate is introduced into a light guide from side surfaces of a groove-shaped recessed portion, and propagates in the light guide. Thus, the three colors are mixed. The light further propagates in the light guide while being reflected at both side end surfaces of the light guide by the function of a reflective sheet and the like. Thus, color mixing progresses. Further, the light is reflected upward by diffuse reflective means provided on the lower surface of the light guide, and emitted as backlight light to the outside through a diffuse sheet.
Owner:NEC LCD TECH CORP

Virtual image display device and manufacturing method of virtual image display device

In fabrication of a light guiding unit, a half mirror layer as a reflection film for folding light is covered by a light transmission main body part as a coating member, i.e., a light transmission member, and a hard coating layer is deposited thereon. Therefore, even when the surfaces of a light guide main body part and the light transmission main body part forming the light guiding unit are cleansed as pre-processing of the deposition of the hard coating layer, the situations such that the half mirror layer is separated thereby may be avoided and optical properties of the half mirror layer may not be lost.
Owner:SEIKO EPSON CORP

Compact wearable display

ActiveUS20130101253A1Minimizing laser speckleCoupling light guidesGratingLight guide
There is provided a wearable display comprising a light source emitting light of a first wavelength; a first SBG device having a front side and a rear side; first and second transparent plates sandwiching said SBG device; independently switchable transparent electrode elements applied to the opposing surfaces of said transparent plates, a means for spatio-temporally modulating light from the light source to provide image light and a means for coupling the image light into the light guide formed by the two transparent plates and the SBG device. The SBG device comprises a multiplicity of selectively switchable grating regions. The SBG device diffracts image into the pupil of an eye.
Owner:DIGILENS

System for measuring a biological parameter by means of photoacoustic interaction

A system for measuring a biological parameter, such as blood glucose, the system comprising the steps of directing laser pulses from a light guide into a body part consisting of soft tissue, such as the tip of a finger to produce a photoacoustic interaction. The resulting acoustic signal is detected by a transducer and analyzed to provide the desired parameter.
Owner:OPTEL INSTR

Light-Guiding Devices and Monitoring Devices Incorporating Same

A monitoring device configured to be attached to the ear of a person includes a base, an earbud housing extending outwardly from the base that is configured to be positioned within an ear of a subject, and a cover surrounding the earbud housing. The base includes a speaker, an optical emitter, and an optical detector. The cover includes light transmissive material that is in optical communication with the optical emitter and the optical detector and serves as a light guide to deliver light from the optical emitter into the ear canal of the subject wearing the device at one or more predetermined locations and to collect light external to the earbud housing and deliver the collected light to the optical detector.
Owner:VALENCELL INC

Planar light source device having polarization separator formed of two sheets with mating triangular prisms and different indices of refraction

The purpose of the invention is to provide a light guide of a variety of forms having a uniform distribution of brightness in the plane and a planer light source device for a liquid crystal display device which uses such light guide. The light guide comprises a first surface which is a surface to which a natural polarization light is incident and a second surface other than the first surface which is an exit surface of a specific polarization light into which, said natural polarization light is modulated, wherein;said light guide has an interface of two materials of different indices of refraction oriented at an angle of thetaB+ / -alpha degrees relative to the primary propagation direction of said incident light, said thetaB being an angle satisfying Brewster's condition, more than two orientations of said interface exist in a single light guide, and the difference between the indices of refraction of the two materials of different indices of refraction is between 0.001 and 1.0. thetaB is typically about 45 degrees. The light guide comprises a first transparent member having a plurality of upwardly convex right angle isosceles triangles on a first surface thereof and a first index of refraction and a second transparent member having a plurality of downwardly convex right angle isosceles triangles on a second surface thereof and a second index of refraction, and said first surface and said second surface contact each other.
Owner:SEKISUI CHEM CO LTD +1

Semiconductor light-emitting element and method of manufacturing the same

Disclosed is a semiconductor light-emitting element, comprising an n-type-cladding layer; a light guide layer positioned on the n-type cladding layer; a multiple quantum well structure active layer positioned on the light guide layer; a p-type carrier overflow prevention layer positioned on the active layer and having an impurity concentration of 5×1018 cm−3 to not more than 3×1019 cm−3; a p-type light guide layer positioned on the p-type carrier overflow prevention layer and-having an impurity concentration of 1×1018 cm−3 or more and less-than that of the p-type carrier overflow prevention layer; and a p-type cladding layer positioned on the p-type light guide layer and having a band gap narrower than the p-type carrier overflow prevention layer, and a method of manufacturing the same.
Owner:KK TOSHIBA

Virtual image display device

A half mirror layer has an angle dependency in which when an angle of incidence becomes larger than the angle of incidence range of image light, reflectance increases, such that it is possible to prevent unintended light, which is emitted to a light transmitting member from a light guiding member and is reflected inside a light transmitting member, from being returned to a light emission portion of the light guiding member after passing through the half mirror layer as a reflective film at a relatively large angle of incidence. Therefore, it is possible to prevent the image light passed through the light transmitting member from becoming ghost light while mitigating the demand for increasing processing accuracy of the light transmitting member, and bonding accuracy between the light guiding member and the light transmitting member.
Owner:SEIKO EPSON CORP

Ultra-thin backlight

A backlight for a display device, such as a liquid crystal display device, includes a light guiding plate having a front and a rear surface. The front and rear surfaces may be parallel to one another, or may instead be non-parallel. To the extent that such surfaces are non-parallel, one surface may be included at a single, or multiple angles with respect to the other surface. The backlight further includes a light source that is coupled to an edge of the light guiding plate by means of an energy conserving coupling section, and which provides light that is conditioned and transmitted through the light guiding plate. Light extractors are disposed on at least one side of the light guiding plate to assist in the transmission and conditioning of the light that is provided to the light guiding plate by the light source.
Owner:VISUS LTD

LED-based edge lit illumination system

An edge lit illumination system is directed to providing backlighting utilizing a luminescent impregnated lightguide. The apparatus includes an LED radiation source providing a first radiation and a lightguide optically coupled to the LED radiation source including a luminescent material embedded or coated on an output surface of the lightguide designed to absorb the first radiation, and emit one or more radiations. The illumination system may further include additional optical components such as reflective layers, for directing radiation striking the back surfaces of the light guide back into the lightguide, as well as diffusion layers, UV reflectors, and polarizers.
Owner:GE LIGHTING SOLUTIONS LLC

Head mounted display

Disclosed herein is a head mounted display including: an eyeglasses frame-like frame to be mounted onto an observer's head; and two image display devices, each of the image display devices including an image generating device, and light guide means which is mounted to the image generating device, which as a whole is located on the side of the center of an observer's face relative to the image generating device, on which beams emitted from the image generating device are incident, through which the beams are guided, and from which the beams are emitted toward an observer's pupil.
Owner:SONY CORP

Blind-spot warning system for an automotive vehicle

A host vehicle system includes a blind-spot warning system providing an indication to the host vehicle a target vehicle entering a blind-spot. The system includes a vehicle bus receiving various vehicle control signals, magneto-resistive sensors receiving proximity information as a function of magnetic field variations, a smart algorithm controller analyzing bus signals and sensor signals, and various vehicle collision systems such as passive restraints, optical light guides, and audible warnings operating in response to a threat from a target vehicle.
Owner:FORD GLOBAL TECH LLC

Backlight for liquid crystal display

A backlight includes a lightguide having a light emission surface, a first light input surface, a second light input surface opposing the first light input surface, and a lightguide thickness. A plurality of antireflection features are on or in the first light input surface and second light input surface. Each antireflection feature has a base length value and a height value that are less than the light guide thickness. A right eye image solid state light source is positioned to provide light into the first light input surface and a left eye image solid state light source is positioned to provide light into the second light input surface.
Owner:3M INNOVATIVE PROPERTIES CO

Information system and method for providing information using a holographic element

In the following, the essential points are summarized again by means of groups of characteristics which each individually and in combination with one another characterize the invention specifically: 1. Information system for providing information in correlation with light incident on an eye, having a holographic element disposed in front of the eye, and an optical scanning device which detects light incident on the eye by way of the holographic element. 2. Information system according to Point 1, wherein the optical scanning device is at a fixed predetermined angular ratio with respect to the holographic element. 3. Information system according to Point 1 or 2, wherein the optical scanning device detects light which is refracted by the holographic element before it impinges on the eye and does not enter the eye. 4. Information system according to one of the preceding points, wherein the optical scanning device detects light which was first reflected back from the eye and was then refracted by the holographic element. 5. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye only at several discrete wavelengths in the visible range before the light impinges on the eye for the detection by the optical scanning device, and refracts light reflected back from the eye only at one discrete wavelength in the infrared range for the detection by the optical scanning device. 6. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye at fewer than 20, fewer than 10 or fewer than 5 discrete wavelengths in the visible range either before the light impinges on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 7. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye at a discrete wavelength in the infrared range either before the light impinges on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 8. Information system according to one of the preceding points, wherein the holographic element refracts light reflected back by the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 9. Information system according to one of the preceding points, wherein the holographic element refracts light of one or several discrete wavelengths, at which the optical scanning device has a high sensitivity. 10. Information system according to one of the preceding points, wherein the holographic element refracts light a several discrete wavelengths such that the refracted light is guided to a common point, and the angle of incidence of the light on this point permits a clear optionally also wavelength-independent conclusion on the angle of incidence of the light upon the holographic element. 11. Information system according to one of the preceding points, having an optical projection device which projects light into the eye by way of the holographic element. 12. Information system according to Point 11, wherein the light detected by the optical detection device and the light projected in front of the optical projection device run in the opposite direction through a common light guiding lens system and can be focused such by the optical scanning device or projection device that their respective beams describe the same path from or into the eye. 13. Information system for providing information in correlation with information obtained from an eye, having a holographic element disposed in front of the eye, and an optical projection device which projects light into the eye by way of the holographic element. 14. Information system according to one of Points 11 to 13, wherein the optical projection device projects light only at one or several discrete wavelengths in the visible range and / or at a wavelength in the infrared range. 15. Information system according to one of Points 11 to 14, wherein the holographic element refracts the wavelengths of the projected light. 16. Information system according to one of Points 11-15, wherein the optical projection device is in a fixed predetermined angular ratio with respect to the holographic element. 17. Information system according to Point 16, wherein the holographic element comprises one or more optical flags, whose light reflection characteristics can be used by the information system by means of a photodetector for calibrating a projection angle of the optical projection device and / or a light guiding device. 18. Information system according to Point 17, including Point 12, wherein the information system uses the light reflection characteristics of the optical flags for calibrating a scanning angle of the optical scanning device and / or a light guiding device. 19. Information system according to Point 17, wherein the optical flags are generated in that reflecting elements are imaged during the creating of the holographic element such in the holographic element that they (something is missing) reflect light of one or several wavelengths which, corresponding to the predetermined angular ratio with respect to the optical projection device is incident on the holographic element, back along the path of incidence. 20. Information system according to Point 19, wherein the photodetector device has a splitter mirror which is arranged such in the light beam of the optical projection device that it guides a portion of the light, which impinges on the splitter mirror against the projection direction, in the direction of a photodetector which detects in at least two areas situated concentrically around one another. 21. Information system according to one of the preceding points, wherein the holographic element has light-refracting characteristics at one or several discrete wavelengths, which correspond to a reflection on the concave side of an area constructed according to the curvature of a rotationally symmetrical ellipsoid. 22. Information system according to one of the preceding points, wherein the holographic element has light refracting characteristics at one or several discrete wavelengths, which correspond to a refraction on the concave side of an area constructed according to the curvature of a rotationally symmetrical ellipsoid, which refraction corresponds to a reflection on a respective conical surface which is rotationally symmetrical about the axis of rotation of the ellipsoid and is perpendicular with respect to the ellipsoid at the site of the refraction. 23. Method of providing information in correlation with light incident on an eye, whereby a holographic element is disposed in front of the eye, and an optical scanning device detects the light incident on the eye by means of the holographic element. 24. Method according to Point 23, whereby the optical scanning device is at a fixed predetermined angular ratio with respect to the holographic element. 25. Method according to Point 23 or 24, whereby the optical scanning device detects light which is refracted by the holographic element before impinging on the eye and does not enter the eye. 26. Method according to one of Points 23 to 25, whereby the optical scanning device detects light which was first reflected back from the eye and was then refracted by the holographic element. 27. Method according to one of Points 23 to 26, whereby the holographic element refracts light originating from the field of vision of the eye only at several discrete wavelengths in the visible range before its impinging on the eye for the detection by the optical scanning device and refracts light reflected back from the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 28. Method according to one of Points 23 to 27, whereby the holographic element refracts light originating from the field of vision of the eye at fewer than 20, fewer than 10 or fewer than 5 discrete wavelengths in the visible range either before its impinging on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 29. Method according to one of Points 23 to 28, whereby the holographic element refracts light originating from the visual field of the eye at a discrete wavelength in the infrared range either before its impinging on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 30. Method according to one of Points 23 to 29, whereby the holographic element refracts light reflected back from the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 31. Method according to one of Points 23 to 30, whereby the holographic element refracts light of one or several discrete wavelengths, at which the optical scanning device has a high sensitivity. 32. Method according to one of Points 23 to 31, whereby the holographic element refracts light at several discrete wavelengths such that the refracted light is guided to a common point, an the angle of incidence of the light onto this point allows a clear, optionally also wavelength-independent conclusion on the angle of incidence of the light upon the holographic element. 33. Method according to one of Points 23 to 32, whereby an optical projection device projects light by way of the holographic element into the eye. 34. Method according to Point 33, whereby the light detected by the optical scanning device and the light projected in front of the optical projection device run in the opposite direction through a common light guiding lens system and can be focused such by the optical scanning device or projection device that their respective beams describe the same path from or into the eye. 35. Method of providing information in correlation with information obtained from an eye, whereby a holographic element is disposed in front of the eye, and an optical projection device projects light by way of the holographic element into the eye. 36. Method according to points 33 to 35, whereby the optical projection device projects light only at one or several discrete wavelengths in the visible range and / or at a wavelength in the infrared range. 37. Method according to one of Points 33 to 36, whereby the holographic element refracts the wavelengths of the projected light. 38. Method according to one of Points 33 to 37, whereby the optical projection device is in a fixed predetermined angular ratio with respect to the holographic element. 39. Method according to Point 38, whereby the holographic element is equipped with one or more optical flags, whose light reflection characteristics can be used by means of a photodetector device for calibrating a projection angle of the optical projection device and / or a light guiding device. 40. Method according to Point 39, including Point 34, whereby the light reflection characteristics of the optical flags are used for calibrating a scanning angle of the optical scanning device and / or a light guiding device. 41. Method according to Point 39, whereby the optical flags are generated in that reflecting elements are imaged during the creating of the holographic element such in the holographic element that they beam light of one or more wavelengths which, corresponding to the predetermined angular ratio with respect to the optical projection device is incident on the holographic element, back along the incidence path. 42. Method according to Point 41, whereby the photodetector device is equipped with a photodetector detecting in at least two areas situated concentrically around one another, and a splitter mirror which is arranged such in the light beam of the optical projection device that it directs a portion of the light impinging on the splitter mirror against the projecting direction, in the direction of the photodetector. 43. Method according to one of Points 23 to 42, whereby the holographic element has light-refracting characteristics at one or several discrete wavelengths which correspond to a reflection on the concave side of an area constructed according to a curvature of a rotationally symmetrical ellipsoid. 44. Method according to one of Points 23 to 43, whereby the holographic element has light-refracting characteristics at one or several discrete wavelengths, which correspond to a refraction on the concave side of an area constructed according to a curvature of a rotationally symmetrical ellipsoid, which refraction corresponds to a reflection on a respective conical surface rotationally symmetrical about the axis of rotation of the ellipsoid, which conical surface is perpendicular with respect to the ellipsoid at the site of the refraction. While the preceding description with respect to the title is limited to embodiments falling under the initially mentioned generic terms “scanning information system” and “projecting information system”, each individual discussed characteristic of their disclosure can also be used in an embodiment of the systems, devices and methods initially identified by reference to their full content. The applications by the same applicant and / or the same inventors mentioned in the present application should be considered to be a correlated invention complex.
Owner:APPLE INC

Battery-powered light source arrangement for endoscope

A light source arrangement for a battery-powered light source unit of an endoscope comprises a cylindrical housing, a base disposed at one end of the housing, a plurality of LEDs connected to a flexible circuit board supported on the base and a focusing lens. A light guide for directing light emanating from the LEDs. The light guide comprises a reflective surface formed on an inner wall of the housing, a reflector having a concave reflective surface which is disposed at one end of the housing so as to surround the LEDs or a micro-lens array disposed in front of the LEDs with each micro lens aligned with the LED.
Owner:FUJI PHOTO OPTICAL CO LTD

Head-mounted display device and control method for the head-mounted display device

A head-mounted display device includes: an image display unit including an image-light generating unit that generates image light representing an image and emits the image light and a light guide unit that guides the emitted image light to the eye of a user, the image display unit being for causing the user to visually recognize a virtual image; and a control unit that includes an operation surface, is connected to the image display unit, and controls image display by the image display unit. When it is assumed that the user shifts the user's attention from the virtual image, the control unit adjusts the luminance of the image-light generating unit or adjusts the image light generated by the image-light generating unit to reduce the visibility of the virtual image.
Owner:SEIKO EPSON CORP

Structures and Methods for the Joint Delivery of Fluids and Light

Guides for intubation which simultaneously transport fluids and light into a body site are tube-like in structure and consist of a hollow cylindrical optical core surrounded on its inner and outer walls by a cladding of lower index of refraction. Materials comprising the optical core are selected such that the optical absorption and scatter are sufficiently small to transport light efficiently over an extended distance as fluid is transferred through the tube interior. Methods of fabrication, light coupling and light delivery using waveguide tubes are disclosed. Particular applications of waveguide tubes in the medical and industrial sectors are described.
Owner:DEUT HARVEY +1

Optical imaging device

An optical imaging device of the present invention comprises: a light source device; a light guide and illumination lens, provided in an insertion section that can be inserted into a body cavity, for constituting an illumination light path for guiding an illumination light from the light source device to a subject; an objective lens for receiving return lights from the subject; an image capturing section for acquiring a visible light band image from the return light; an excitation light cut filter and image capturing section for acquiring a fluorescent image from the return lights; and an illumination light filter, provided on the illumination light path, for decreasing light in a band overlapping with the band of light of which image is captured by the image capturing section from the illumination light incident on.
Owner:OLYMPUS CORP

Keypad

A thin keypad including a top surface layer, a light guide layer, a capacitive sensing layer and a piezo layer provides for touch input, pressure input and haptic feedback.
Owner:NOKIA TECHNOLOGLES OY

Optical stimulation therapy

Methods of delivering optical stimulation to a target tissue from an optical stimulation device are provided. One method comprises sensing a temperature at the optical stimulation device or proximate to the optical stimulation device, and adjusting the delivery of light to the target tissue based on the sensed temperature. Another method comprises delivering the light to the target tissue with an optical light guide and sensing bioelectric signals with a sense electrode, wherein the optical light guide and the sense electrode each comprise a material that produces substantially no induced current in an electromagnetic field. Another method comprises delivering light from a light source of an optical stimulation device to a window of the optical stimulation device, delivering the light from the window to an optical light guide optically connected to the window, and delivering the light to a target tissue via the optical light guide.
Owner:MEDTRONIC INC

Light emitting devices with improved light extraction efficiency

A device includes a light emitting semiconductor device bonded to an optical element. In some embodiments, the optical element may be elongated or shaped to direct a portion of light emitted by the active region in a direction substantially perpendicular to a central axis of the semiconductor light emitting device and the optical element. In some embodiments, the semiconductor light emitting device and optical element are positioned in a reflector or adjacent to a light guide. The optical element may be bonded to the first semiconductor light emitting device by a bond at an interface disposed between the optical element and the semiconductor light emitting device. In some embodiments, the bond is substantially free of organic-based adhesives.
Owner:LUMILEDS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products