Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

972 results about "Multiple quantum" patented technology

Gallium nitride-based flip-chip light-emitting diode with double reflective layers on its side and fabrication method thereof

The present invention discloses a double-reflective-layer gallium nitride-based flip-chip light-emitting diode with both a distributed Bragg reflector and a metal reflective layer on its side and a fabrication method thereof. The light-emitting diode includes: a sapphire substrate; a buffer layer, an N-GaN layer, a multiple-quantum-well layer and a P-GaN layer stacked on the sapphire substrate in that order; a transparent conductive layer formed on the P-GaN layer; a distributed Bragg reflector formed over a side of the epitaxial layer and the transparent conductive layer; a metal reflective layer formed on the DBR; a P-type ohmic contact electrode formed on the transparent conductive layer; and an N-type ohmic contact electrode formed on the exposed N-GaN layer, wherein the P-type ohmic contact electrode and the N-type ohmic contact electrode are bonded to a heat dissipation substrate through a metal conductive layer and a ball bonder. By arranging a double reflection structure including a DBR and a metal reflective layer on the sloping side of the LED chip, the good reflectivity of the reflective layers can be fully utilized, thereby improving the light-emission efficiency of the LED.
Owner:XIAMEN SANAN OPTOELECTRONICS TECH CO LTD

GaN-based Single chip white light emitting diode epitaxial material

The invention relates to GaN-based Single chip white light emitting diode epitaxial material comprising a substrate and also comprising an initial growth layer, an intrinsic GaN buffer layer, an n-type GaN layer, a stress relaxation layer, an InGaN multiple quantum well structure light emitting layer, a p-type AlGaN sandwich layer and a p-type GaN layer which grow in sequence on the substrate. Thestress relaxation layer is an InGaN/GaN superlattice stress modulation layer which comprises InGaN layers and GaN layers, which are grown alternatively; the InGaN layers and GaN layers have the growth cycle of 6-500 and the corresponding thickness of 10 nm to 3 Mum; and the In components in the InGaN layers are in the range of 1-35 percent. Because the stress-relaxed InGaN/GaN superlattice stressmodulation layer is added between the n-type GaN layer and a multiple quantum light emitting layer, the In segregation effect is strengthened, InGaN quantum dots with different components are formed,and the mixing of different-wave light emitted by the InGaN quantum dots realizes the white light emitting. The cost of the white light emitting diode is reduced radically, the light emitting efficiency and the light using efficiency are increased and the integral performance of the white light emitting diode is improved.
Owner:INST OF PHYSICS - CHINESE ACAD OF SCI

Manufacturing method of tunable semiconductor laser and tunable semiconductor laser

Provided is a making method of a tunable semiconductor laser and a tunable semiconductor laser, wherein the making method comprises the following procedures: growing lower waveguide layer, multiple quantum trap structure, upper waveguide layer and indium phosphide layer epitaxially and sequentially on the n type substrate; growing earth silicon dielectric membrane on the epitaxial layer; dividing into active waveguide region and raster region; butting passive waveguide portion; removing earth silicon dielectric membrane and indium phosphide layer on the surface of the active waveguide region; growing ridge waveguide indium phosphide material and low resistivity InGaAs ternary layer sequentially; growing earth silicon dielectric membrane; making raster graphic of the ridge waveguide and the ridge waveguide on the raster region; etching raster of the ridge waveguide and the ridge waveguide on the raster region; growing earth silicon dielectric membrane continuously; opening the window separately on active waveguide region and raster region in order to make electrode isolation ditch; making P face and N face electrode of laser. The invention has good product property and high automation degree of the product making, which simplifies the technology process and has good product ratio.
Owner:GUANGXUN SCI & TECH WUHAN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products