Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

473 results about "Radiofrequency pulse" patented technology

Radiofrequency pulse. a short burst of electromagnetic radiation in the radiofrequency range, used in combination with magnetic gradients to generate a magnetic resonance image.

Multi-echo magnetic resonance imaging method and system

Method, systems and arrangements are provided for creating a high-resolution magnetic resonance image (“MRI”) or obtaining other information of a target, such as a cardiac region of a patient. Radio-frequency (“RF”) pulses can be transmitted toward the target by, e.g., an RF transmitter of an MRI apparatus. In response, multiple echoes corresponding to the plurality of pulses may be received from the target. Data from each of the echoes can be assigned to a single line of k-space, and stored in memory of the apparatus. An image of the target, acceleration data and/or velocity data associated with a target can be generated as a function of the data. In one exemplary embodiment, the data from different echoes may be assigned to the same k-space line, and to different cardiac phases. In one further embodiment, parallel processing may be used to improve the resolution of the image acquired during a single breath-hold duration. In yet another embodiment, utilizing a segmented implementation, multiples lines of k-space are acquired for a given cardiac phase (or time stamp) per trigger signal. The present invention may be utilized for the heart or for any other anatomical organ or region of interest for the evaluation and study of flow dynamics with very high temporal resolution.
Owner:NEW YORK UNIV

Method and device for monitoring radio-frequency exposure in a magnetic resonance measurement

In a method and device for monitoring the physiologically effective radio-frequency exposure in at least one specific volume region of an examination subject in a magnetic resonance data acquisition scan in a magnetic resonance system, the magnetic resonance system having a radio-frequency antenna structure with a number of individually controllable radio-frequency signal channels for generation of radio-frequency field distributions in an examination volume including the examination subject, amplitude values are acquired that respectively represent, at specific acquisition points in time, a signal amplitude of the radio-frequency signals emitted or to be emitted via the radio-frequency signal channels in the course of the magnetic resonance measurement. Also, phase values are acquired that represent the phases of the appertaining radio-frequency signals at these points in time. Local exposure values are then determined on the basis of the amplitude values and phase values, these local exposure values respectively representing a physiological exposure that the radio-frequency pulses cause at the examination subject at a specific location at a specific time. Based on this, exposure control values are determined that are compared with predetermined exposure limit values. When an exposure limit values is reached or exceeded, a control signal is output.
Owner:SIEMENS HEALTHCARE GMBH

High-precision measurement method for magnetic field compensation inertial angular rate based on of SERF (spin-exchange relaxation free) atomic device

The invention provides a high-precision inertial angular rate measurement method based on magnetic field compensation of an SERF (spin-exchange relaxation free) atomic device. The method comprises the steps that a glass gas chamber and a vacuum gas chamber which is filled with positive pressure gas and contains alkali metal are manufactured firstly, an oven is heated to make the temperature in the alkali metal gas chamber reach a temperature required by an SERF state; an operation period begins: pumping is conducted on the alkali metal gas chamber; pumping is interrupted, and 90-degree radio-frequency pulses act in the vertical pumping direction; radio frequency is interrupted, two times of probe light pulse detection are performed in the vertical pumping direction at an interval, and the magnetic field strength can be obtained according to the above measure experimental data; then, pumping is performed for a period of time by using circularly polarized light, then probe light detection is performed in the vertical pumping direction, the experimental data and measured magnetic field strength are compensated so that the high-precision inertial angular rate can be obtained, and pumping and detection are completed. The magnetic field measurement and inertial measurement are performed in the same experimental device under the same conditions, the measured magnetic field is utilized to compensate inertial angular rate errors caused by magnetic field interferences, and the measurement accuracy is improved.
Owner:BEIHANG UNIV

Method for obtaining high-resolution two-dimensional J decomposition spectrum

InactiveCN106093099AAvoid signal excitationAvoid applicabilityAnalysis using nuclear magnetic resonanceDecompositionLine width
The invention provides a method for obtaining a high-resolution two-dimensional J decomposition spectrum, and relates to a nuclear magnetic resonance spectroscopy detection method. The method comprises: loading a sample to be detected into a standard nuclear magnetic test tube, and conveying into the detection chamber of a nuclear magnetic resonance spectrometer; sampling the one-dimensional hydrogen spectrum of the sample to be detected, and obtaining the signal peak distribution area and the spectral line width so as to provide the reference for the spectral width parameter setting, wherein the line width value reflects the magnetic field uniformity condition; measuring the pulse width of a radio frequency pulse required by excitation of the sample to be detected; introducing a compiled pulse sequence on the nuclear magnetic resonance spectrometer, opening the heteronuclear intermolecule multiple quantum coherent signal excitation module, the indirect dimensional evolving module, the spin echo fixed delay module and the J modulating fast sampling module of the pulse sequence, and setting the experiment parameters of various modules; skipping the artificial shimming operation process, and directly executing data sampling; and after completing the data sampling, calling data post-processing codes to carry out related data post-processing so as to obtain the high-resolution two-dimensional J decomposition spectrum being not affected by the inhomogeneous magnetic field.
Owner:XIAMEN UNIV

Steady-state procession gradient multi-echo water and grease separation imaging method

The invention discloses a steady-state procession gradient multi-echo water and grease separation imaging method. The steady-state procession gradient multi-echo water and grease separation imaging method comprises the following steps of on the basis of a steady-state procession imaging sequence for conventional scanning on a magnetic resonance imaging system, repeatedly exciting the imaging area by a radio frequency pulse at the interval of 10ms magnitude or smaller short cycle TR; setting a pulse flip angle into +alpha / 2 in a first sequence repetition cycle, and eliminating the sampling period; alternatively setting the pulse flip angle into +alpha and -alpha in the subsequent sequence repetition cycle; using the layer selection gradient, phase encoding gradient and frequency encoding gradient to perform three-dimensional encoding, wherein the sum of integral areas of gradients in each bearing is zero, and the proton magnetizing vector procession is approximate to the steady state; enabling the magnetizing vectors to form three or two gradient echoes under the action of three or two positive and negative alternating frequency encoding gradients in each TR period, wherein the integral area of gradients in the frequency encoding direction is zero; performing direct phase encoding on the three or two echoes according to echo peak interval and water and grease chemical displacement difference value.
Owner:谱影医疗科技(苏州)有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products