Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1418results about "Navigation by terrestrial means" patented technology

Human body attitude calculation method based on quaternion and Kalman filtering

The invention discloses a human body attitude calculation method based on quaternion and Kalman filtering. The method comprises determining a vector coordinate system and a navigation coordinate system, determining an attitude matrix, respectively acquiring accelerated speed, angular velocity and magnetic induction intensity signals through an accelerometer, a gyroscope and a magnetometer, carrying out initial alignment on a human body attitude detection system, calculating initial attitude angles such as a pitching angle, a rolling angle and a heading angle, transforming the initial attitude angles into initial quaternion, carrying out system modeling according to a quaternion differential equation, inputting the initial quaternion as a measured value, carrying out data fusion on the attitude data through a Kalman filtering algorithm, outputting an estimated value which is updated quaternion, carrying out normalization processing on the updated quaternion to obtain final posture information, updating the attitude matrix and acquiring updated attitude angles. The human body attitude estimation method effectively improves the accuracy of human posture detection, has a fast response speed, has good stability and instantaneity and has a broad application prospect.
Owner:NANJING UNIV OF SCI & TECH

Pedestrian inertial positioning system based on indoor magnetic field feature assistance

The invention provides a pedestrian inertial positioning system based on indoor magnetic field feature assistance. The system comprises a magnetic field and inertial data obtaining module, a magnetic field positioning module, a pedestrian dead reckoning module, a positioning fusion module and an output module, wherein the magnetic field and inertial data obtaining module is used for acquiring magnetic field, accelerated speed and angular velocity information; the magnetic field positioning module is used for building a magnetic field feature library and carrying out time-frequency analysis on the magnetic field vector sequence in real time to extract the time-frequency feature, and matching with the magnetic field feature library to carry out magnetic field feature positioning; the pedestrian dead reckoning module is used for updating accelerated speed and angular velocity zero offset according to the condition that the step velocity discontinuity is zero during walking, judging the step number and calculating the step length and the direction of each step; the positioning fusion module is used for fusing a magnetic field feature positioning result and a pedestrian dead reckoning inertial positioning result by means of particle filter; and the output module is used for displaying a positioning result on web pages and terminals. The system provided by the invention has the characteristics of being independent from beacon during positioning, low in cost and consumption of positioning terminals, accurate in positioning result and adaptive to environment change.
Owner:MEDIASOC TECH

Self-adaptation three-dimensional attitude positioning method based on microinertia and geomagnetic technology

The invention discloses a self-adaptation three-dimensional attitude positioning method based on microinertia and a geomagnetic technology, comprising the following steps of: (1) inducing a motion attitude of a carrier by utilizing a sensor of a microinertia measuring device; (2) setting an initial attitude of the microinertia measuring device and accelerated speed and geomagnetic field information under a global coordinate system; (3) solving the attitude value of the microinertia measuring device; (4) predicting the attitude value of the microinertia measuring device by utilizing triaxial micro-gyroscope sensor data; (5) carrying out confidence judgment on the triaxial micro-acceleration sensor data and triaxial magnetic field sensor data, detecting the interference of a surrounding environment, and setting self-adaptation parameters; (6) obtaining the attitude error value of the microinertia measuring device by utilizing the triaxial micro-acceleration sensor data and the triaxial magnetic field sensor data which are processed in the step (5); (7) fusing the attitude predictive value obtained from the step (4), corrected information obtained from the step (6) and the self-adaptation parameters obtained from the step (5) to obtain the attitude value of the microinertia measuring device; and (8) outputting attitude information.
Owner:INST OF AUTOMATION CHINESE ACAD OF SCI

Hand movement tracking system and tracking method

The invention discloses a hand movement tracking system and a hand movement tracking method. The invention comprises an attitude and heading reference system based on an accelerometer, a gyroscope and a magnetic sensor, and a hand movement tracking method based on the attitude and heading reference system. The hand movement tracking method comprises the following steps: firstly, obtaining a triaxial acceleration measured by the accelerometer, a triaxial angular velocity measured by the gyroscope and a triaxial magnetic-field component measured by the magnetic sensor, performing error compensation on the magnetic sensor by adopting a least square method to establish an error model after an upper computer receives sensor data, eliminating high-frequency noise of the triaxial acceleration by virtue of a window low-pass filter, and establishing an error model for the gyroscope so as to perform error compensation on random drift of the gyroscope; secondly, effectively integrating the gyroscope, the accelerometer and the magnetic sensor by virtue of an improved adaptive complementary filtering algorithm to obtain an attitude angle and a path angle; and finally, performing gravity compensation and discrete digital integration on acceleration signals to obtain a velocity and a track of a hand movement. The tracking system and the tracking method disclosed by the invention can be applied to a man-machine interactive system, is convenient to operate, and is strong in experience feeling.
Owner:ZHEJIANG UNIV

Geomagnetic indoor positioning system based on self-adaptive particle filter algorithm

The invention discloses a geomagnetic indoor positioning system and method based on a self-adaptive particle filter algorithm. The geomagnetic indoor positioning system comprises the novel self-adaptive particle filter algorithm and an efficient geomagnetic fingerprint data collecting unit. The efficient geomagnetic fingerprint data collecting unit has the main function of quickly collecting indoor geomagnetic signals by using a mobile phone magnetometer and converting the indoor geomagnetic signals into a geomagnetic fingerprint model to be stored. The novel self-adaptive particle filter algorithm is the improvement to an existing filter algorithm to improve the robustness, the precision and the usability. The key technology of the self-adaptive particle filter improvement algorithm mainly comprises a self-adaptive behavior model, a novel measurement model, a self-adaptive resampling model and a positioning precision estimation and positioning failure detection model. The geomagnetic indoor positioning system is suitable for various smart phones integrated with acceleration sensors, gyroscopes and magnetometers. The geomagnetic indoor positioning system has the advantages that the facing directions, the placing positions and using of the smart phones are not limited, and positioning precision is high.
Owner:NANJING UNIV

Indoor positioning system and indoor positioning method based on three-dimensional multipoint wireless and micro-inertia navigation

The invention disclose an indoor positioning system and an indoor positioning method based on three-dimensional multipoint wireless and micro-inertia navigation as well as an expansion type indoor control system. The indoor positioning system comprises a calibration device and a sensing device, wherein the calibration device comprises at least three first wireless transceiver units used for sending signals at intervals of first preset time; and the sensing device comprises an inertia sensing unit, a second wireless transceiver unit and a processing unit, wherein the inertia sensing unit is used for sensing the motion of a target object, the second wireless transceiver unit is used for producing a response signal when receiving the signal transmitted by each first wireless transceiver unit, and the processing unit is used for respectively calculating a first space coordinate of the target object according to the motion of the target object sensed by the inertia sensing unit, calculating a second space coordinate of the target object according to the response signal, and combining and processing the first space coordinate and the second space coordinate to obtain the final space coordinate of the target object. With the adoption of technical schemes of the indoor positioning system and the indoor positioning method, the positioning accuracy is high, and the motion response of the target object is sensitive, and the response rate achieves the millimeter.
Owner:SHENZHEN HEZHI CHUANGYING ELECTRONICS

Whole attitude angle updating method applied to agricultural machinery and based on nine-axis MEMS (micro-electromechanical system) sensor

The invention discloses a whole attitude angle updating method applied to agricultural machinery and based on a nine-axis MEMS (micro-electromechanical system) sensor. The whole attitude angle updating method applied to agricultural machinery and based on the nine-axis MEMS sensor comprises the following steps: a gyroscope error model, an electronic compass calibration ellipse model and a seven-dimensional EKF (extended Kalman filter) model are established, and parameter vectors of corresponding motion attitudes of a vehicle body are set; data including the acceleration, the angular velocity and the geomagnetic field intensity of vehicle body motion are acquired in real time; the angle, the speed, the location information and the heading angle of the vehicle body are calculated through the established gyroscope error model and electronic compass calibration ellipse model; data fusion processing is performed on the angle, the speed, the location information and the heading angle of the vehicle body through the seven-dimensional EKF model, and the motion attitude angle of the vehicle body is updated in real time. The method comprising the steps has small errors and high precision and is stable and reliable.
Owner:SHANGHAI HUACE NAVIGATION TECH

Combined initial alignment system and alignment method for strapdown inertial navigation system of underground coal mining machine

ActiveCN105371871AHigh positioning accuracyAddresses difficulty relying on external positioning systems for initial alignment of SINSNavigation by terrestrial meansNetwork topologiesWireless sensor networkingEngineering
A combined initial alignment system and alignment method for a strapdown inertial navigation system of an underground coal mining machine belong to initial alignment system and alignment method for positioning navigation of underground coal mining machines. The system is composed of a strapdown inertial navigation system installed on the coal mining machine, a wireless sensor network mobile node, an inclination sensor, a geomagnetic field sensor and anchor nodes installed on a hydraulic support. After coarse alignment of the strapdown inertial navigation system, the wireless sensor network is used to detect the location information of the underground coal mining machine, the inclination sensor measures the roll and pitch angle, and the geomagnetic field sensor measures the yaw angle. A pose measurement equation of the coal mining machine is constructed, and the pose measurement equation is combined with an error model after the coarse alignment of the strapdown inertial navigation system to establish a state equation; fusion smoothing is carried out to obtain the accurate location information of the coal mining machine; and the precise alignment of the strapdown inertial navigation system is conducted to complete the initial alignment. The invention realizes precise initial alignment of strapdown inertial navigation combination under the severe closed condition in coal mine, and greatly improves the precision of the integrated positioning under large misalignment angle of the strapdown inertial navigation system of the coal mining machine.
Owner:CHINA UNIV OF MINING & TECH

Method for autonomous navigation using geomagnetic field line map

InactiveCN101520328ATake advantage ofUsing multiple characteristic quantities of the geomagnetic field to jointly match fullyInstruments for comonautical navigationNavigation by terrestrial meansTerrainCruise missile
The invention discloses a method for autonomous navigation using a geomagnetic field line map. Firstly, a plurality of characteristic quantities of the geomagnetic filed on a path of an aerial vehicle are measured continuously according to a preset frequency, and measurement data are used to build a matched line map of the corresponding characteristic quantities in a sliding window mode with fixed-point number; and a matched line map of the plurality of characteristic quantities is matched and compared with a reference map by using an algorithm for fining global optimum according to a matching similarity rule and a matching result fusion rule to acquire the position information of the aerial vehicle. The technology makes full use of the characteristics of the plurality of characteristic quantities of the geomagnetic field to calculate the accurate position of the aerial vehicle, avoids navigation accumulated error under a condition of long flight period, is particularly suitable for navigation in environments without typical geomorphic features such as ocean and plain, can meet requirements of future cruise missiles, unmanned aerial vehicles, submarines and the like for passive, all-sky time, all-weather and all-terrain navigation, and also can be used in civil area.
Owner:NORTHWESTERN POLYTECHNICAL UNIV

Underwater carrier geomagnetic anomaly feature points matching navigation method

An underwater carrier geomagnetic anomaly feature points matching navigation method belongs to the technical field of underwater navigation and solves the problem in the prior art that the location of an underwater carrier can not be determined according to geomagnetic field information. The method provided by the invention comprises the following steps of: acquiring a target magnetic moment vector of present position of the underwater carrier and a relative position vector from the present position of the underwater carrier to a target magnetic source; constructing a map of the underwater target magnetic source; carrying out coordinate transformation based on the absolute position of the underwater carrier so as to obtain geographic coordinates of the map; calculating the position of the underwater carrier in the map at sampling time and the geographic coordinates of the underwater carrier at the sampling time; updating the position of the target magnetic source; updating the map of the underwater target magnetic source; and repeating the above relative processes to complete the matching navigation of the underwater carrier. The invention is suitable for underwater carrier navigation.
Owner:NORTHEAST FORESTRY UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products