Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

946 results about "Rolling angle" patented technology

Coming to your question, ROLL ANGLE is the angle between the aircraft wings and the Y-axis. Greater the Roll angle, more quicker the plane turns to the intended direction.

Machine vision and inertial navigation fusion-based mobile robot motion attitude estimation method

The invention discloses a machine vision and inertial navigation fusion-based mobile robot motion attitude estimation method which comprises the following steps of: synchronously acquiring a mobile robot binocular camera image and triaxial inertial navigation data; distilling front/back frame image characteristics and matching estimation motion attitude; computing a pitch angle and a roll angle by inertial navigation; building a kalman filter model to estimate to fuse vision and inertial navigation attitude; adaptively adjusting a filter parameter according to estimation variance; and carrying out accumulated dead reckoning of attitude correction. According to the method, a real-time expanding kalman filter attitude estimation model is provided, the combination of inertial navigation and gravity acceleration direction is taken as supplement, three-direction attitude estimation of a visual speedometer is decoupled, and the accumulated error of the attitude estimation is corrected; and the filter parameter is adjusted by fuzzy logic according to motion state, the self-adaptive filtering estimation is realized, the influence of acceleration noise is reduced, and the positioning precision and robustness of the visual speedometer is effectively improved.
Owner:ZHEJIANG UNIV

Multi-antenna GNSS control system and method

ActiveUS20110054729A1Accurate and economical preplannedVehicle testingAnalogue computers for trafficSteering controlEngineering
A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The roll angle facilitates correction of the lateral motion induced position errors resultant from motion of the antennae as the vehicle moves based on an offset to ground and the roll angle. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. A vehicle control method includes the steps of computing a position and a heading for the vehicle using GNSS positioning and a rate gyro for determining vehicle attitude, which is used for generating a steering command. Alternative aspects include multiple-antenna GNSS guidance methods for high-dynamic roll compensation, real-time kinematic (RTK) using single-frequency (L1) receivers, fixed and moving baselines between antennas, multi-position GNSS tail guidance (“breadcrumb following”) for crosstrack error correction, articulated implements with multiple antennas on each implement section, video input and guiding multiple vehicles and pieces of equipment relative to each other.
Owner:AGJUNCTION

GNSS guidance and machine control

A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The roll angle facilitates correction of the lateral motion induced position errors resultant from motion of the antennae as the vehicle moves based on an offset to ground and the roll angle. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. A vehicle control method includes the steps of computing a position and a heading for the vehicle using GNSS positioning and a rate gyro for determining vehicle attitude, which is used for generating a steering command. Alternative aspects include multiple-antenna GNSS guidance methods for high-dynamic roll compensation, real-time kinematic (RTK) using single-frequency (L1) receivers, fixed and moving baselines between antennas, multi-position GNSS tail guidance (“breadcrumb following”) for crosstrack error correction, guiding multiple vehicles and pieces of equipment relative to each other and earth-moving equipment and method applications.
Owner:AGJUNCTION

Super-hydrophobic nanometer transparent coating and preparation method thereof

The invention provides a super-hydrophobic nanometer transparent coating and a preparation method thereof and belongs to the technical field of super-hydrophobic paint. The method includes the steps that firstly, a first category of inorganic nanometer particles are added into an organic solution, and ultrasonic dispersion is performed; secondly, dispersing agents and a second category of inorganic nanometer particles are added, and ultrasonic dispersion is performed so that a dispersion solution can be obtained; crosslinking agents and additives are added in the dispersion solution, ultrasonic dispersion is performed, finally, low-surface energy polymers are added, mixtures are evenly mixed, and transparent and clear super-hydrophobic paint is obtained; the surface of a solid base materials is coated with the transparent and clear super-hydrophobic paint, and the super-hydrophobic nanometer transparent coating is obtained through low-temperature thermal drying and curing. The super-hydrophobic performance of the super-hydrophobic nanometer transparent coating prepared through the method is excellent, the contact angle can be 160 degrees, the rolling angle is 1-7 degrees, the super-hydrophobic nanometer transparent coating can be sprayed to the surfaces of most of common materials, the morphology of the surfaces of the materials are not changed, and the application prospects and the application potency are very wide.
Owner:BEIHANG UNIV

Position and attitude parameter measurement system of machine body of boring machine and method thereof

The invention relates to a position and attitude parameter measurement system of a machine body of a boring machine and a method thereof, and the position and attitude parameter measurement system consists of a line laser transmitter, a rack of the line laser transmitter, laser targets, a programmable computer controller, an A/D conversion module and two inclination sensors. The line laser transmitter is positioned by a laser direction indicator and the rack of the line laser, emits a fan-shaped laser beam and forms linear spots on the machine body of the boring machine. An photosensitive element in one position on one of the two laser targets consisting of the photosensitive elements senses the laser beam and generates a current signal at any time, and the current signals are processed and calculated by an internal circuit of the laser targets and the programmable computer controller, thereby determining the positions of the laser beam on the laser targets; furthermore, the mounting positions of the laser targets on the boring machine are known, thereby obtaining a deflection angle and deflection displacement of the boring machine. Two inclination sensors measure a pitch angle and a roll angle of the boring machine, thereby completing the measurement of position and attitude parameters of the machine body of the boring machine. The system has the advantages of low cost, high precision, good real-time property and convenient operation.
Owner:CHINA UNIV OF MINING & TECH (BEIJING) +1

Organic polysilazane/inorganic nano-material super-hydrophobic coating and preparation method thereof

The invention discloses an organic polysilazane/inorganic nano-material super-hydrophobic coating and a preparation method thereof. According to the preparation method, firstly, an organic polysilazane solution is prepared, a silane coupling agent containing hydrophobic units is used for carrying out hydrophobization on an inorganic nano-material, and dispersion liquid of the hydrophobic inorganic nano-material is prepared; then, an organic material or an inorganic material or a metal material serves as a base material, and an organic polysilazane and the hydrophobic inorganic nano-material alternatively deposit on the surface of the base material in sequence through a deposition method; finally, appropriate heat treatment is carried out on the surface which is subjected to multiple times of alternative deposition. The obtained coating shows good super-hydrophobic performance, the contact angles of water drops on the surface of the coating are larger than 150 degrees, the rolling angles are smaller than 10 degrees, and the coating has good mechanical and chemical stability and has wide application prospect in the field of waterproof clothes, exterior wall coating, oil-water separation, biomedicine and the like. According to the method, the preparation process is simple, and large hydrophobic coatings can be established on various base material surfaces.
Owner:SOUTH CHINA UNIV OF TECH

Method for preparing super-hydrophobic antireflex micron and nano composite structure surface

The invention belongs to the technical field of preparing the surface of a composite structure, and in particular relates to a method for preparing super-hydrophobic antireflective silicon surface with a micron and nanometer composite structure. The method comprises the following steps: cleaning a silicon chip; preparing a micron-level silicon island and a gridding structure on the surface of the silicon chip; carrying out catalytic etching taking silver or aurum nanoparticles as blockage; obtaining the surface of the micron and nanometer composite structure; and carrying out chemical modification of the surface of the composite structure. A static contact angle between the super-hydrophobic antireflective material surface prepared by the method and water is more than 150 degrees, and a static rolling angle of water is less than 3 degrees. The surface has superior antireflective performance, and in particular, the light reflectivity within the wavelength range between 800 and 1,100 nm is less than 3 percent. With application of the method, the super-hydrophobic antireflective silicon surface of the micron and nanometer composite structure can be produced on scale, can be widely applied to a solar cell, a microfluidic chip, a photoelectric device, and the like, and has good industrial application prospect.
Owner:JILIN UNIV

Minisize rudders three-dimensional track emulation method under city environment

The present invention relates to a method of the 3D track simulation for a miniature aircraft under urban surroundings and belongs to the field of the 3D real-time route navigation technology for a miniature aircraft. The following modules are set in a computer: a map digitalized module, which digitalizes the 3D model of urban surroundings including threat points, buildings, the departure and target points of a miniature aircraft that is inputted by the graphical user interface (GUI), map parameters and the coordinate of a candidate navigation point composed of the 3D model of urban surroundings and the map parameters; a flight path programming module, which inputs the data from the map digitalized module, calculates the overall route index that takes the flight resource consumption rate and the survival rate into consideration, figures out the most feasible route using network optimizing algorithm under the condition of taking barriers into consideration, and then smooths the bevel at turnings and generates a realtime flight orbit; a data-collecting module, which collects the coordinate values of the aircraft positions and postures outputted by the flight path programming module and forms a posture coordinate value including orthogonal coordinate variables X, Y and Z, a pitch angle h, a yawing angle p and a roll angle r. The present invention saves flight resources and improves flights simultaneously.
Owner:TSINGHUA UNIV

Image processing system

An image processing system includes a camera, an image processor and a calibration surface. The calibration surface includes thereon a calibration pattern, the calibration pattern comprising a plurality of alternately coloured elements which provide a corresponding plurality of corners at locations on the calibration pattern at which more than two of the coloured elements adjoin. The corner locations define a first group of lines and a second group of lines, the lines in each of the group of lines are parallel with respect to each other and with respect to the calibration surface. The first group of lines is orthogonal to the second group of lines and the camera is operable to generate and communicate to the image processor a video signal representative of a scene as viewed by the camera, the scene including the calibration surface. The image processor is operable to detect from the video signal at least some of the corner locations and thereby identify the first and second group of lines of the calibration pattern, to extrapolate the lines from each group of lines to determine a presence and a location of a first intersection point on a plane of the scene as viewed by the camera at which the extrapolated lines from the first group intersect and a second intersection point on the plane of scene as viewed by the camera at which the extrapolated lines from the second group intersect, and to estimate from the presence and the location of the first and second intersection points one or more of an estimated roll angle value, an estimated pitch angle value and an estimated yaw angle value corresponding to a roll angle, pitch angle and yaw angle of the camera relative to the calibration surface. The detection of the corner locations by the image processor comprises identifying from the video signal a plurality of potential corner locations, defining an area of the scene as viewed by the camera centred around each potential corner location, analysing a colour of points lying on a periphery of each area, thereby estimating a likelihood that a corner is located at each potential corner location.
Owner:SONY CORP

Novel imaging method in agile satellite maneuvering

ActiveCN103983254AExtended Imaging TasksGuaranteed Image Processing RequirementsPicture taking arrangementsSpecial data processing applicationsNatural satelliteOn board
The invention relates to a novel imaging method in agile satellite maneuvering, which is capable of realizing imaging of satellite during a posture adjustment process. The method comprises the following steps: according to geographic latitude and longitude of on-board orbit forecast data and imaging object point, a triaxial attitude angle directional target imaging start point of satellite is arranged; a roll angle and a pitch angle are obtained through a modeling algorithm for determining the satellite optical axis directional target imaging point; establishing a CCD image plane in a satellite model, performing calculation to obtain image motion velocity vector and a drift angle through projection calculating, and yaw angle of the satellite is controlled for correcting the drift angle, calculating the image motion velocity vector to obtain TDICCD integration time for image motion compensation, and satisfying the image processing requirement of imaging in maneuvering. The design method is capable of using in a triaxial attitude maneuvering process of the satellite for starting optical payload for a dynamic imaging technology for imaging, so that target directional requirement and image processing requirement during an imaging process can be realized.
Owner:AEROSPACE DONGFANGHONG SATELLITE

Laser heterodyne interference linearity measuring device and laser heterodyne interference linearity measuring method with six-degree-of-freedom detection

The invention discloses a laser heterodyne interference linearity measuring device and a laser heterodyne interference linearity measuring method with six-degree-of-freedom detection. The laser heterodyne interference linearity measuring device comprises a laser heterodyne interference linearity and position detection part and an error detection and compensation part; a four-degree-of-freedom error detection light path consisting of three ordinary beam splitters, a polarizing beam splitter, a plane reflecting mirror, a convex lens, a position sensitive detector and two four-quadrant detectors is additionally arranged in a light path structure of the laser heterodyne interference linearity and position detection part. By utilizing a method for integrating the laser heterodyne interferometry and a laser spot detection method, the simultaneous six-degree-of-freedom detection of a deflection angle, a pitch angle, a rolling angle, horizontal linearity, vertical linearity and linearity position of a measured object can be realized, the error compensation is carried out for the vertical linearity and the vertical linearity position, the influence of rotation error of the measured object on a measurement result in the linearity measuring process can be eliminated, and the measurement precision of the laser heterodyne interference linearity and the position of the laser heterodyne interference linearity can be improved.
Owner:ZHEJIANG SCI-TECH UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products