Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

6816 results about "Ultrasonic dispersion" patented technology

Ultrasonic dispersing is usually a small vibration, acceleration, it has been in the food, fuel, new materials, chemical products, coatings and other fields are widely used. Ultrasonic dispersing can also be used for the preparation of nanomaterials; for food sample detection analysis.(ultrasonic liquid processor)

Super-hydrophilic and underwater-super-oleophobic oil-water separation mesh membrane, and preparation method and application thereof

The invention discloses a super-hydrophilic and underwater-super-oleophobic oil-water separation mesh membrane, and a preparation method and an application thereof. According to the method, fabric mesh with a specification of 100-300 meshes is subjected to ultrasonic cleaning, and is air-dried under normal temperature; a hydrophilic polymer water-sensitive agent and a cross-linking agent are dissolved in water according to a ratio of 1:9-9:1; the mixture is well mixed by magnetic stirring, such that a solution with a concentration of 1-99% is prepared; nano-sol is prepared with a sol-gel method; the solution and the nano-sol are prepared into a mixed solution with a concentration of 1-99%, and the solution is well dispersed through ultrasonic dispersion; the mesh is soaked in the mixed solution and is vertically lifted, or the mesh is directly sprayed by using a high-pressure spraying gun; and the mesh is bake-dried, such that the super-hydrophilic and underwater-super-oleophobic oil-water separation mesh membrane is obtained. Contact angles of the super-hydrophilic and underwater-super-oleophobic oil-water separation mesh membrane with water and oil in air are both 0 DEG, and the membrane is super-hydrophilic. Under water, the contact angle of the membrane with oil drops is larger than 150 DEG, and the membrane has an oil drop low adhesion characteristic. The mesh membrane provided by the invention can be used in oil-water mixture separation and oil-containing sewage processing.
Owner:SOUTH CHINA UNIV OF TECH

Super-hydrophobic nanometer transparent coating and preparation method thereof

The invention provides a super-hydrophobic nanometer transparent coating and a preparation method thereof and belongs to the technical field of super-hydrophobic paint. The method includes the steps that firstly, a first category of inorganic nanometer particles are added into an organic solution, and ultrasonic dispersion is performed; secondly, dispersing agents and a second category of inorganic nanometer particles are added, and ultrasonic dispersion is performed so that a dispersion solution can be obtained; crosslinking agents and additives are added in the dispersion solution, ultrasonic dispersion is performed, finally, low-surface energy polymers are added, mixtures are evenly mixed, and transparent and clear super-hydrophobic paint is obtained; the surface of a solid base materials is coated with the transparent and clear super-hydrophobic paint, and the super-hydrophobic nanometer transparent coating is obtained through low-temperature thermal drying and curing. The super-hydrophobic performance of the super-hydrophobic nanometer transparent coating prepared through the method is excellent, the contact angle can be 160 degrees, the rolling angle is 1-7 degrees, the super-hydrophobic nanometer transparent coating can be sprayed to the surfaces of most of common materials, the morphology of the surfaces of the materials are not changed, and the application prospects and the application potency are very wide.
Owner:BEIHANG UNIV

Oxidized grapheme/polyaniline super capacitor composite electrode material and preparation method and application thereof

The invention discloses an oxidized grapheme/polyaniline super capacitor composite electrode material and the preparation method and the application thereof. The preparation method comprise the following steps: firstly, adding oxidized graphite to water for ultrasonic dispersion so as to form an oxidized grapheme solution with uniformly dispersed single pieces; at room temperature, dropping aniline to the obtained oxidized grapheme solution for continuous ultrasonic dispersion to from a mixed solution; at a low temperature condition, adding hydrogen peroxide, ferric trichloride and a hydrochloric acid solution dropwise to the mixed solution, and stirring the solution for polymerization; and after the reaction is finished, centrifugating, washing and roasting the obtained mixed solution in vacuum to obtain the oxidized grapheme/polyaniline super capacitor composite electrode material which is used as the electrode material of an electricity storage system of a super capacitor and a battery. The oxidized grapheme/polyaniline super capacitor composite electrode material with good electrochemistry performance is obtained by the method, and the specific capacity of the oxidized grapheme and the polyaniline is greatly improved. In addition, the addition of the oxidized grapheme improves the charge and discharge service life of the polyaniline.
Owner:NANJING UNIV OF SCI & TECH

Film made from graphene-carbon nanotube composite material and preparation method of film

The invention discloses a film made from a graphene-carbon nanotube composite material and a preparation method of film. The preparation method comprises the following steps: mixing graphene and carbon nanotubes sufficiently and evenly via stirring and ultrasonic dispersion, reacting the graphene with the carbon nanotubes sufficiently via hydrothermal or solvothermal conditions, removing solvents after finishing the reaction to obtain the graphene-carbon nanotube composite materials which are preformed and tangled in a network structure, forming the film on the surfaces of various base materials via coating, spraying, spin-coating and filtering the obtained graphene-carbon nanotube composite materials to obtain the composite film made from the graphene-carbon nanotube composite materials and the base materials, and removing the base materials to obtain the film made from the graphene-carbon nanotube composite materials. According to the method, graphene-carbon nanotube composition is realized simply and effectively and dispersed in the solvents stably, and the two obtained films can be applied in the aspects of heat conduction and heat radiation systems of high calorific value electronic devices, LED (light-emitting diode) lamps and liquid crystal display products.
Owner:ZHANGJIAGANG KANGDE XIN OPTRONICS MATERIAL

Catalyst for high-selectivity preparation of light aromatic hydrocarbon by using synthesis gas and preparation method thereof

The invention provides a catalyst for high-selectivity preparation of light aromatic hydrocarbon by using synthesis gas and a preparation method thereof and belongs to the field of catalysts. The catalyst is prepared from, by mass, 20%-60% of modified zeolite molecular sieve and 40%-80% of zirconium-containing composite oxide. The preparation method comprises the steps that the zirconium-containing composite oxide is added to a solvent, and ultrasonic dispersion is performed to obtain a solution A; the modified zeolite molecular sieve is added into the solution A; the mixture obtained after ultrasonic dispersion is subjected to suction filtration, and the obtained filter cake after washing is dried; the sample obtained after drying is grinded into powder; the powdery sample is calcinated, and the obtained sample is the catalyst for high-selectivity preparation of the light aromatic hydrocarbon by using synthesis gas. The light aromatic hydrocarbon can be prepared in a high-selectivity mode, and the stability is good. The preparation method of the catalyst for high-selectivity preparation of the light aromatic hydrocarbon by using the synthesis gas is simple and low in cost and has good industrial application prospect.
Owner:XIAMEN UNIV

Carbon fiber emulsion sizing agent improved by carbon nano tube and preparation method of carbon fiber emulsion sizing agent

InactiveCN102212967APlay the role of stress transmissionIncreased interlaminar shear strengthCarbon fibresEmulsionCarbon fibers
The invention relates to a carbon fiber emulsion sizing agent improved by a carbon nano tube and a preparation method of the carbon fiber emulsion sizing agent. The carbon fiber emulsion sizing agent comprises a carbon fiber sizing agent, the carbon nano tube, a dispersing agent and a solvent. The preparation method comprises the following steps of: 1, preparing the carbon fiber sizing agent; and 2, adding the carbon fiber sizing agent into the solvent to prepare a sizing working solution, mixing the carbon nano tube and the sizing working solution, performing ultrasonic treatment for 1 to 4 hours at the power of 300 to 600w, adding the dispersing agent, and performing ultrasonic dispersion for 2 to 4 hours to obtain the carbon fiber emulsion sizing agent improved by the carbon nano tube. The carbon fiber emulsion sizing agent has favorable stability, the post processability of carbon fiber can be improved after being processed by the emulsion sizing agent, the interfacial bond strength between the carbon fiber and substrate resin can be enhanced, the shear strength among layers is enhanced, and the performance of a composite material is improved to a certain extent. Moreover, the preparation method is simple, low in cost and environment-friendly.
Owner:DONGHUA UNIV

Graphene/mesoporous titanium dioxide visible light catalyst and preparation method

The invention relates to a graphene / mesoporous titanium dioxide visible light catalyst and a preparation method, and belongs to the technical fields of nanometer composite materials and photocatalysis. The method comprises the following steps of: adding a graphene oxide into glacial acetic acid, and performing ultrasonic dispersion to obtain dispersion liquid of the graphene oxide; and adding a titanium source into the dispersion liquid of the graphene oxide, and preparing the graphene / mesoporous titanium dioxide nanometer composite visible light catalyst in a one-step in-situ form by a hydrothermal method. The graphene / mesoporous titanium dioxide visible light catalyst has the advantages of readily available raw materials and low cost, the preparation process is simple and convenient, and titanium dioxide in the obtained nanometer composite material has a nanometer poroid structure, a regular size and a special appearance; and titanium dioxide nanometer granules can be distributed onthe surface of graphene and are high in dispersity. Photocatalytic degradation experiments indicate that the graphene / mesoporous titanium dioxide nanometer composite light catalyst has a good photocatalytic degradation effect on rhodamine B under the irradiation of visible light, and is an ideal nanometer composite visible light catalyst.
Owner:JIANGSU UNIV

Graphene modified high-heat-conductivity aluminum-based composite material and powder metallurgy preparation method

The invention provides a graphene modified high-heat-conductivity aluminum-based composite material and a powder metallurgy preparation method thereof. The material comprises reinforced grains and an aluminum substrate, wherein the composite boundary of the reinforced grains and the aluminum substrate contains high-heat-conductivity graphene nanosheets. The method comprises the following steps: (1) soaking the reinforced grains with a strong acid solution, subsequently washing with deionized water till being neutral, drying, and removing the surface impurities, thereby obtaining activated reinforced grains; (2) adding the activated reinforced grains into a graphene dispersion liquid, mechanically stirring or performing ultrasonic dispersion, and wrapping the graphene nanosheets on the surface, thereby preparing the graphene modified reinforced grains; and (3) mixing the graphene modified reinforced grains with the aluminum substrate powder, pressing into blanks, and sintering, thereby preparing the graphene modified high-heat-conductivity aluminum-based composite material. The composite material provided by the invention is good in chemical stability, high in thermal conductivity and can be used as a heat management material of a large-power semiconductor device.
Owner:SHANGHAI JIAO TONG UNIV

Preparation method of nitrogen doped graphene/ metal oxide nanometer composite material

The invention discloses a preparation method of a nitrogen doped graphene / metal oxide nanometer composite material. The preparation method comprises the following steps of: weighing graphene and metal salt the cation of which is trivalent or quadrivalent to be added in a dispersant, and then carrying out ultrasonic dispersion to obtain mixed liquor; (2), reacting the mixed liquor obtained in the step (1) with alkaline air on a gas-liquid interface for 3-12hours at the temperature of 60-200 DEG C, cooling, centrifuging, washing a precipitate and drying to obtain powder; and (3) introducing the alkaline air or a mixed gas of the alkaline air and inert gas, maintaining the powder to be at the constant temperature of 600-900 DEG C for 2-6 hours, and cooling to room temperature to obtain the nitrogen doped graphene / metal oxide nanometer composite material. According to the invention, the conductibility and interface action of the composite material obtained by the method provided by the invention are improved due to the doping of nitrogen; and the method provided by the invention has the advantages of simple process, cheap cost, high productive rate, short cycle and the like, and is environment-friendly, and can be suitable for industrialization large-scale production.
Owner:SOUTH CHINA UNIV OF TECH

Method for preparing nitrogen-doped graphene with high nitrogen doping amount

The invention discloses a method for preparing nitrogen-doped graphene with high nitrogen doping amount. The method comprises the following steps: (1) dispersing of graphene; (2) ultrasonic dispersion; (3) microwave heating; and (4) filtering and drying. The nitrogen doping amount of the nitrogen-doped graphene prepared by the method disclosed by the invention is 10%-15.0%, the density of free carriers in graphene is greatly increased by the high nitrogen doping amount, the interaction of graphene and metal is enhanced, no oxidation pretreatment is carried out, no toxic solvent is used in the reaction process, reactants are simple in component, reaction conditions are mild, and the prepared nitrogen-doped graphene has excellent electrochemical property and can be used for preparation of new energy materials such as lithium ion battery, lithium-air battery, super capacitor electrode material and fuel cell oxygen reduction catalysts. According to the method disclosed by the invention, a high-pressure kettle is heated by using microwaves without high temperature; the method is low in energy consumption, is carried out in an airtight environment and therefore hardly causes environment pollution; in addition, the method is simple in process and convenient to operate and needs less production equipment, thus, the cost is further reduced.
Owner:FUJIAN XFH NEW ENERGY MATERIALS CO LTD

Method of electrolytically extracting and detecting fine inclusions in steel

The invention discloses a method of electrolytically extracting and detecting fine inclusions in steel, belonging to the technical field of metal physical research methods. The method comprises the following technical steps of: using an organic electrolyte to carry out electrolysis on a steel sample; after electrolysis, washing the electrolyte mixed with the inclusions by absolute ethyl alcohol, and carrying out magnetic separation on the electrolyte by a magnet; separating the electrolyte after magnetic separation and collecting the inclusions by adopting a method of centrifugation by a centrifugal machine; putting the collected inclusions into a solvent easy to volatilize, carrying out ultrasonic dispersion on the inclusions by an ultrasonic cleaner, and then dripping a solution after ultrasonic dispersion on a carrier drop by drop by a trace pipette; and after the solvent volatilizes, putting the carrier which is distributed with the inclusions into a scanning electron microscope to analyze. The method has the advantages that the fine inclusions can be extracted in an undamaged way, the obtained inclusions are good in dispersion under a field of view of the scanning electron microscope, the shapes of the inclusions are perfect, and a good space statistic analysis result can be obtained so as to supply accurate data for a product.
Owner:SHOUGANG CORPORATION

Nanometer copper/graphene composite material and preparation method and application thereof

The invention belongs to the technical field of new material preparation and lubricating oil additives, and discloses a nanometer copper / graphene composite material and a preparation method and application thereof. The preparation method comprises the following steps of: firstly dissolving a copper precursor compound, a surface active agent and a complexing agent into reducing alcohol, then adding graphene oxide, and carrying out ultrasonic dispersion to obtain a mixed solution; then adding a reducing agent to the mixed solution, transferring into a reaction kettle, introducing CO2 gas, and controlling gas pressure and temperature so that CO2 achieves a supercritical state; stirring the mixed solution inside the reaction kettle for reacting, cooling, decompressing, washing by centrifuging, and carrying out vacuum drying to obtain the nanometer copper / graphene composite material. The preparation method disclosed by the invention is simple, saved in time and fast. The prepared nanometer copper / graphene composite material has the characteristics of single phase, controllability in loading capacity, small nanometer copper particle size, uniformity in nanometer copper distribution on the surface of a graphene nanometer layer, and the like, has a synergetic lubricating effect, and can be used for outstandingly improving the antifriction and abrasion-resistant property of basic lubricating oil.
Owner:SOUTH CHINA UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products