Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

5484 results about "Filter cake" patented technology

A filter cake is formed by the substances that are retained on a filter. The filter cake grows in the course of filtration, becoming "thicker" as particulate matter is retained. With increasing layer thickness, the flow resistance of the filter cake increases. After a time, the filter cake has to be removed from the filter, e.g. by backflushing. If this is not accomplished, the filtration is disrupted because the viscosity of the filter cake gets too high; hence, too little of the mixture to be filtered can pass through the filter cake and the filter plugs. The specifications of the filter cake dictate the filtration method of choice.

Method for recycling titanium dioxide in waste SCR (Selective Catalytic Reduction) denitration catalyst

The invention relates to a method for recycling titanium dioxide in a waste SCR (Selective Catalytic Reduction) denitration catalyst. The method comprises the following steps of: firstly removing dust from the waste denitration catalyst, pulverizing, then adding concentrated sulfuric acid so as to carry out acid hydrolysis on the waste denitration catalyst to obtain a concentrated titanyl sulfate solution, and adding water for dilution; adding a non-ionic emulsifier serving as a flocculating agent and a sulfonate surface active agent or a polycarboxylate surface active agent as a coagulant aid, and adding water-solubility methyl silicone oil; pumping into a plate-and-frame filter press for filter pressing, carrying out vacuum concentration on filtrate, then heating to 90 DEG C to 98 DEG C, and maintaining for 5.5 hours so as to hydrolyze the filtrate; cooling a hydrolysis product to 40 DEG C, and carrying out vacuum filtration so as to sediment out metatitanic acid; rinsing with sand-filtered water and deionized water, and adding potassium carbonate or phosphorous acid to obtain metatitanic acid filter cakes; and drying the filter cakes, calcining at 500-800 DEG C, and then pulverizing to obtain a titanium dioxide finished product. The method has the advantages of being capable of reducing disposal amount of the waste denitration catalyst, recycling the waste denitration catalyst and reducing the production cost of the waste denitration catalyst.
Owner:江苏万德环保科技有限公司

Method for preparing concavo-convex rod soil/zinc oxide nanometer composite material

The invention discloses a method for preparing concavo-convex rod soil/zinc oxide nanometer composite materials, which comprises the following steps: purifying and dispersing the concavo-convex rod soil in water to prepare concavo-convex rod soil dispersion liquid; then adjusting the temperature of the concavo-convex rod soil dispersion liquid to 30 to 100 DEG C; agitating the concavo-convex rod soil dispersion liquid dispersion liquid and while adding zinc salt aqueous solution with the concentration of 0.3 to 3 mol.L<-1> and carbonate aqueous solution with the concentration of 0.3 to 2 mol.L<-1> to the concavo-convex rod soil dispersion liquid dispersion liquid; and keeping the pH value of mixed liquid within the range of 6.0 to 8.0. The prepared mixed serous fluid comprising the prepared nanometer concavo-convex rod soil and basic zinc carbonate is filtered; and a filter cake is washed by deionized water; when the electrical conductivity of filtrate is less than 300 MuS.cm<-1>, the washing is finished; and the filter bake obtained is dried at the temperature of below 100 DEG C, then baked for 1 to 10 hours at the temperature of 300 to 600 DEG C, and finally crushed. The invention is simple and has the advantages of low energy consumption and high safety; the load of the adsorbing material prepared is uniform and has good dispersibility, strong adsorbability and remarkable photo-catalyzed degradation property.
Owner:JIANGSU POLYTECHNIC UNIVERSITY +1

Preparation method of reduction graphene oxide heat-conducting film

The invention relates to a preparation method of a reduction graphene oxide heat-conducting film. The preparation method comprises the following steps of: firstly weighing graphite oxide, adding the graphite oxide to deionized water, and carrying out ultrasonography, centrifugalizing at low speed for impurity removal, drying and grinding to obtain graphene oxide; dissolving the graphene oxide into a solvent, and carrying out the ultrasonography to prepare a graphene oxide dispersion solution; carrying out vacuum filtration on the graphene oxide dispersion solution by adopting a microporous filtering film, drying an obtained filter cake and the filtering film together, and then stripping the filter cake from the filtering film to obtain a graphene oxide film; acquiring the reduction graphene oxide heat-conducting film by adopting a high-temperature heat treatment or hydriodic acid reduction method in a restricted space. The preparation method disclosed by the invention effectively solves the technical problems of easiness for breakage and difficulty in large-area integrity keeping in preparing the reduction graphene oxide heat-conducting film from the graphene oxide film and is simple and higher in film heat conductivity; the prepared reduction graphene oxide heat-conducting film achieves potential practical application value in the field of heat radiation of a microelectronic device.
Owner:SHANGHAI INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products