Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

8780 results about "Specific gravity" patented technology

Specific gravity, also called relative density, is the ratio of the density of a substance to the density of a reference substance; equivalently, it is the ratio of the mass of a substance to the mass of a reference substance for the same given volume. Apparent specific gravity is the ratio of the weight of a volume of the substance to the weight of an equal volume of the reference substance. The reference substance for liquids is nearly always water at its densest (at 4 °C or 39.2 °F); for gases it is air at room temperature (20 °C or 68 °F). Nonetheless, the temperature and pressure must be specified for both the sample and the reference. Pressure is nearly always 1 atm (101.325 kPa).

Decussation stereo torpedo catching net

InactiveCN101226043ADoes not affect mobilityLarge effective interception areaDefence devicesPull forceDecussation
The invention relates to a crossed three-dimensional torpedo interception net capable of intercepting torpedoes, especially a torpedo interception net which can be projected or cast and can outspread automatically when entering into the water to form a decussate three-dimensional torpedo interception net. The appearance is column-shaped, a top cover is arranged at the top part and is fixed and sleeved by bayonet locks on the casing which is divided into four sections, the specific density of the top part is lighter than the seawater and the specific density of the bottom part is heavier than the seawater. A decussate bracket is arranged inside, a telescopic link is connected on the lateral side, and a suspended net is connected with the telescopic link via a hanger. When the torpedo interception net is projected or cast into sea via a surface ship, a submarine or a helicopter, the top cover is ejected via a spring, the casing is opened, a going barren dives the telescopic link to expand and the suspended net is dragged to outspread in horizontally. Under the upward pulling force of the telescopic link and the downward pulling force of the weight of the connector of the suspended net, the suspended net is outspreaded along vertical direction; a stabilization membrane connected with the inner side of the suspended net control the stability of the torpedo interception net along the vertical direction.
Owner:孙珠峰

Drilling fluid, drill-in fluid, completition fluid, and workover fluid additive compositions containing thermoset nanocomposite particles; and applications for fluid loss control and wellbore strengthening

In one aspect, this invention relates to the use of thermoset nanocomposite particles as components of drilling fluid, drill-in fluid, completion fluid, and workover fluid additive packages to reduce fluid losses to a formation and / or to enhance a wellbore strength. In another aspect, this invention relates to the use particles of specific gravity ranging from about 0.75 to about 1.75 as components of drilling fluid, drill-in fluid, completion fluid, and workover fluid additive packages to reduce fluid losses to a formation and / or to enhance a wellbore strength. Using embodiments of the invention, reduction of fluid loss and / or enhancement of wellbore strength may be achieved while working with water-based, oil-based, invert emulsion, or synthetic drilling muds. The currently most preferred embodiments of the invention use substantially spherical thermoset nanocomposite particles, possessing a specific gravity from approximately 1.02 to approximately 1.15 wherein the matrix is a terpolymer of styrene, ethylvinylbenzene and divinylbenzene, and wherein carbon black particles possessing a length that is less than about 0.5 microns in at least one principal axis direction are incorporated as a nanofiller.
Owner:SUN DRILLING PRODS

Method for determining pump flow without the use of traditional sensors

A technique for determining pump flow without using traditional sensors features steps and modules for creating a calibrated power curve at closed valve conditions at several speeds; calculating coefficients from a normalized power curve based on a pump's power ratio; and solving a polynomial power equation for flow at the current operating point. The calibrated power curve may be created by increasing the speed of the pump from a minimum speed to a maximum speed and operating the pump with a closed discharge valve. This data is used to correct published performance for shutoff power and best efficiency point power at rated speed in order to determine the pump's power ratio. It is also used to accurately determine closed valve power at the current operating speed. The pump's power ratio is determined by the equation: Pratio=Pshutoff @100%/PBEP<sub2>—</sub2>corr. The polynomial power equation may, for example, include a 3rd order polynomial equation developed using coefficients from the normalized power versus flow curve, and corrections may be made for speed, hydraulic efficiency and specific gravity in the polynomial power equation. Complex roots may be determined to solve the 3rd order polynomial equation using either Muller's method or some other suitable method, and the calculated actual flow may be determined for a specific operating point.
Owner:ITT MFG ENTERPRISES LLC

Modified thermal processing of heavy hydrocarbon feedstocks

The present invention is directed to the upgrading of heavy petroleum oils of high viscosity and low API gravity that are typically not suitable for pipelining without the use of diluents. It utilizes a short residence-time pyrolytic reactor operating under conditions that result in a rapid pyrolytic distillation with coke formation. Both physical and chemical changes taking place lead to an overall molecular weight reduction in the liquid product and rejection of certain components with the byproduct coke. The liquid product is upgraded primarily because of its substantially reduced viscosity, increased API gravity, and the content of middle and light distillate fractions. While maximizing the overall liquid yield, the improvements in viscosity and API gravity can render the liquid product suitable for pipelining without the use of diluents. This invention particularly relates to reducing sulfur emissions during the combustion of byproduct coke (or coke and gas), to reducing the total acid number (TAN) of the liquid product, and to reducing the hydrogen sulfide content of one, or more than one component of the product stream. The method comprises introducing a particulate heat carrier into an up-flow reactor, introducing the feedstock at a location above the entry of the particulate heat carrier, allowing the heavy hydrocarbon feedstock to interact with the heat carrier for a short time, separating the vapors of the product stream from the particulate heat carrier and liquid and byproduct solid matter, regenerating the particulate heat carrier in the presence of the calcium compound, and collecting a gaseous and liquid product from the product stream.
Owner:IVANHOE HTL GASOLINEEUM

Method for determining pump flow without the use of traditional sensors

A technique for determining pump flow without using traditional sensors features steps and modules for creating a calibrated power curve at closed valve conditions at several speeds; calculating coefficients from a normalized power curve based on a pump's power ratio; and solving a polynomial power equation for flow at the current operating point. The calibrated power curve may be created by increasing the speed of the pump from a minimum speed to a maximum speed and operating the pump with a closed discharge valve. This data is used to correct published performance for shutoff power and best efficiency point power at rated speed in order to determine the pump's power ratio. It is also used to accurately determine closed valve power at the current operating speed. The pump's power ratio is determined by the equation: Pratio=Pshutoff @100% / PBEP<sub2>—< / sub2>corr. The polynomial power equation may, for example, include a 3rd order polynomial equation developed using coefficients from the normalized power versus flow curve, and corrections may be made for speed, hydraulic efficiency and specific gravity in the polynomial power equation. Complex roots may be determined to solve the 3rd order polynomial equation using either Muller's method or some other suitable method, and the calculated actual flow may be determined for a specific operating point.
Owner:ITT MFG ENTERPRISES LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products