Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

2991results about "Spectrum investigation" patented technology

Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)

Exemplary apparatus and process can be provided for imaging information associated with at least one portion of a sample. For example, (i) at least two first different wavelengths of at least one first electro-magnetic radiation can be provided within a first wavelength range provided on the portion of the sample so as to determine at least one first transverse location of the portion, and (ii) at least two second different wavelengths of at least one second electro-magnetic radiation are provided within a second wavelength range provided on the portion so as to determine at least one second transverse location of the portion. The first and second ranges can east partially overlap on the portion. Further, a relative phase between at least one third electro-magnetic radiation electro-magnetic radiation being returned from the sample and at least one fourth electro-magnetic radiation returned from a reference can be obtained to determine a relative depth location of the portion. First information of the portion based on the first transverse location and the relative depth location, and second information of the portion based on the second transverse location and the relative depth location can be obtained. The imaging information may include the first and second information.
Owner:THE GENERAL HOSPITAL CORP

Light sensor with modulated radiant polychromatic source

An apparatus is described for assessing plant status using biophysical and biochemical properties of the plant remotely sensed by the invention thereby allowing selective monitoring, elimination or treatment of individual plants. In a preferred embodiment, a single polychromatic emitter provides coincident light beams; one beam substantially in the visible portion of the spectrum (400 nm to 700 nm) and the other in the near infrared (NIR) portion of the spectrum (700 nm to 1100 nm). This light beam illuminates a small surface area on the ground, which may be bare ground, desired plants or undesired weeds. The beam of light may be focused, collimated or non-focused. A detector array, usually composed of a visible detector and a NIR detector, detects portions of this polychromatic light beam reflected by the surface area and provides a signal indicative of whether the detected light was reflected by a plant or by some non-plant object such as soil. A controller analyzes this signal and, assuming a plant is detected, responds by activating a device to take some action with respect to the plant or stores the analyzed signal with corresponding DGPS position in the controller's memory for later analysis. A number of actions may be taken by the controller. For instance, if the plant is a weed, the desired action might be to spray herbicide on the weed. Or, if the plant is a crop that is determined to be lacking in nutrient, the desired action may be to apply fertilizer. Additionally, if the plant under test is a turf landscape, such as found on golf courses and sporting fields, plant biomass may be mapped and geo-located using GPS for later, comparative analysis.
Owner:KYLE H HOLLAND TRUSTEE OF THE MARANATHA TRUST DATED JULY 30 2013

Soil measuring instrument, soil measurement assisting device and method, recorded medium on which a program is recorded, recorded medium on which data is recorded, application amount controller, application amount determining device, method for them, and farm working determination assisting system

A model for determining the type of soil, the water content of a soil, and the soil properties, and a soil measurement data storage portion (60) to store therein measurement data necessary to carry out the model and correlated with specific measurement conditions are provided. The water content is measured by a water content measuring portion (57) on the basis of the measurement data fed from a soil sensor (S). The type of soil is determined by a feature extracting portion (56) and a type-of-soil determining portion (58), and the determined type of soil is sent to a determining portion (59). The determining portion (59) determines corresponding conditions and a model according to the type of soil and water content of the measured place received and sets them in a predetermined processing portion. The soil sensor feeds measurement data meeting the measurement conditions to a measurement information processing portion (55), and the processing portion (55) determines the soil properties according to the determined model.
Owner:NAT UNIV CORP TOKYO UNIV OF AGRI & TECH

Multispectral or hyperspectral imaging system and method for tactical reconnaissance

A two-dimensional focal plane array (FPA) is divided into sub-arrays of rows and columns of pixels, each sub-array being responsive to light energy from a target object which has been separated by a spectral filter or other spectrum dividing element into a predetermined number of spectral bands. There is preferably one sub-array on the FPA for each predetermined spectral band. Each sub-array has its own read out channel to allow parallel and simultaneous readout of all sub-arrays of the array. The scene is scanned onto the array for simultaneous imaging of the terrain in many spectral bands. Time Delay and Integrate (TDI) techniques are used as a clocking mechanism within the sub-arrays to increase the signal to noise ratio (SNR) of the detected image. Additionally, the TDI length (i.e., number of rows of integration during the exposure) within each sub-array is adjustable to optimize and normalize the response of the photosensitive substrate to each spectral band. The array provides for parallel and simultaneous readout of each sub-array to increase the collection rate of the spectral imagery. All of these features serve to provide a substantial improvement in the area coverage of a hyperspectral imaging system while at the same time increasing the SNR of the detected spectral image.
Owner:THE BF GOODRICH CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products