Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!
Color translating UV microscope
What is Al technical title?
Al technical title is built by PatSnap Al team. It summarizes the technical point description of the patent document.
a microscope and color technology, applied in the field of color translation microscopes, can solve the problems of high operating and maintenance burden and cost, all prior art attempts failed, and system mediocrity
Inactive Publication Date: 2006-03-09
RICHARDSON TECH
View PDF9 Cites 166 Cited by
Summary
Abstract
Description
Claims
Application Information
AI Technical Summary
This helps you quickly interpret patents by identifying the three key elements:
Problems solved by technology
Method used
Benefits of technology
Benefits of technology
[0010] According to a first aspect of the present invention, there is provided a microscope for translating spectral information to a visible color image in which light from a source is separated into components by either a set of two or more filters or a device for providing wavelength limited light and then passed through or reflected off the sample and then imaged by an objective lens onto a video camera where it is converted to visible light by a fluorescent coating on the photosensitive surface of video camera which provides the image as an electronic signal which is then converted into electronic data by a video to computer interface system and then recombined into a multicolor image by computer processing finally creating a color visible image on a display monitor where the computer is supplied with information on the position of the filters or wavelength limited light in order to synchronize acquisition of the images and the color translation and recombination process.
[0011] According to another aspect of the present invention, there is provided a microscope for translating spectral information to a visible color image in which light from one or more sources is separated into components by either a set of two or more filters or device for providing wavelength limited light and then passed through or reflected off an sample then imaged onto the input of an image intensifier by an objective lens then converted to visible light by the image intensifier or other wavelength translating device the output of which is then imaged on the input of a video camera which provides the image as an electronic signal which is then converted into electronic data by a video to computer interface system and then recombined into a multicolor image by computer processing finally creating a color visible image on a display monitor where the computer is supplied with information on the position of the filters or wavelength limited light in order to synchronize acquisition of the images and the color translation and recombination process.
[0015] According to yet another aspect of the present invention, there is provided a microscope which includes active optical monitoring for recording and providing the data to allow relating the effects of the dosage of the illuminating radiation to the observed effects in the samples and for modulation of that illumination to prolong sample life.
[0020] It is an object of yet another embodiment of the present invention to provide a novel color translating microscope which obviates or mitigates at least one of the difficulties of the prior art. It is a further object to provide a novel method of forming a color image of the differential absorption of a microscope sample.
Problems solved by technology
It is believed that all these prior art attempts failed due to the complex nature of the solutions attempted, the attendant costs and the high operating and maintenance burden and costs.
The results from these systems were mediocre at best due to the delay in image availability in the photographic processes and due to the low resolution and long integration times of the video solutions available at the time the work was carried out.
This reference suffers from disadvantages in that, for example, it needs high power UV illumination to provide sufficient illumination to the UV video camera which will be detrimental to the sample, it does not combine multiple three UV images from the same camera created with successive selections of light of different wavelength center and bandpass to create a full three colour visible image and therefore it is prone to misalignment of the individual cameras, and it is preset and not rapidly adjustable as to the wavelengths of light chosen for imaging, it does not use the extending resolving power of the deep UV range of the spectrum in which cellular absorption of biological specimens begins to offer the advantages of absorption staining of living systems and it will not resolve images at resolutions greater than those possible under visible light viewing conditions, as the final displayed visible light and monochromatic UV images are presented to the user at the same pixel resolution.
Method used
the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more
Image
Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
Click on the blue label to locate the original text in one second.
Reading with bidirectional positioning of images and text.
Smart Image
Examples
Experimental program
Comparison scheme
Effect test
Embodiment Construction
[0045] This invention stems from the desire to provide a powerful new research and clinical tool which advances the state of the art in microscopes for living or dynamic sample microscopy while maintaining the sample in a state as close as possible to it's normal conditions. In the discussion below, the following abbreviations are employed with these definitions: UV—light from the spectral region of wavelengths shorter than four hundred nanometers; visible—light from the spectral region from four hundred to seven hundred nanometers; IR—light from infrared, the spectral region of wavelengths longer than seven hundred nanometers; NIR—light from near infrared, the spectral region from seven hundred to three thousand three hundred nanometers; and a subset of IR and DIC—differential interference contrast, a means of enhancing image contrast in microscopy. The terms sample denotes the particular thing being imaged by the microscope and normally placed on a slide in a stage or holder in th...
the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More
PUM
Property
Measurement
Unit
wavelengths
aaaaa
aaaaa
wavelengths
aaaaa
aaaaa
wavelengths
aaaaa
aaaaa
Login to View More
Abstract
A color translating UV microscope for research and clinical applications involving imaging of living or dynamic samples in real time and providing several novel techniques for image creation, optical sectioning, dynamic motion tracking and contrast enhancement comprises a light source emitting UV light, and visible and IR light if desired. This light is directed to the condenser via a means of selecting monochromatic, bandpass, shortpass, longpass or notch limited light. The condenser can be a brightfield, darkfield, phase contrast or DIC. The slide is mounted in a stage capable of high speed movements in the X, Y and Z dimensions. The microscope uses broadband, narrowband or monochromat optimized objectives to direct the image of the sample to an image intensifier or UV sensitive video system. When an image intensifier is used it is either followed by a video camera, or in the simple version, by a synchronized set of filters which translate the image to a color image and deliver it to an eyepiece for viewing by the microscopist. Between the objective and the image intensifier there can be a selection of static or dynamic switchable filters. The video camera, if used, produces an image which is digitized by an image capture board in a computer. The image is then reassembled by an overlay process called color translation and the computer uses a combination of feedback from the information in the image and operator control to perform various tasks such as optical sectioning and three dimensional reconstruction, coordination of the monochromater while collecting multiple images sets called image planes, tracking dynamic sample elements in three space, control of the environment of the slide including electric, magnetic, acoustic, temperature, pressure and light levels, color filters and optics, control for microscope mode switching between transmitted, reflected, fluorescent, Raman, scanning, confocal, area limited, autofluorescent, acousto-optical and other modes.
Description
CROSS-REFERENCE TO OTHER APPLICATIONS [0001] This application is a continuation of U.S. patent application Ser. No. 10 / 635,936, filed Aug. 7, 2003, now U.S. Pat. No. 6,961,080 issued Nov. 1, 2005, which application is a divisional application of U.S. patent application Ser. No. 09 / 402,467, filed Dec. 23, 1999, now U.S. Pat. No. 6,650,357 issued Nov. 18, 2003, which application is a 371 of international patent application No. PCT / CA 98 / 00350 filed Apr. 9, 1998, which application claims priority from U.S. Provisional Patent Application Ser. Nos. 60 / 044,247 and 60 / 041,855 filed Apr. 23, 1997 and Apr. 9, 1997, respectively. This application claims the benefit of all aforementioned applications, and incorporates all said applications herein by reference.FIELD OF THE INVENTION [0002] The present invention relates to a color translating microscope employing ultraviolet light in place of or in addition to visible and / or infrared light sources. More specifically, the present invention relate...
Claims
the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More
Application Information
Patent Timeline
Application Date:The date an application was filed.
Publication Date:The date a patent or application was officially published.
First Publication Date:The earliest publication date of a patent with the same application number.
Issue Date:Publication date of the patent grant document.
PCT Entry Date:The Entry date of PCT National Phase.
Estimated Expiry Date:The statutory expiry date of a patent right according to the Patent Law, and it is the longest term of protection that the patent right can achieve without the termination of the patent right due to other reasons(Term extension factor has been taken into account ).
Invalid Date:Actual expiry date is based on effective date or publication date of legal transaction data of invalid patent.
Login to View More
Patent Type & Authority Applications(United States)