Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2016 results about "Uses eyeglasses" patented technology

Glasses are typically used for vision correction, such as with reading glasses and glasses used for nearsightedness.

Augmented reality glasses for medical applications and corresponding augmented reality system

The invention describes augmented reality glasses (1) for medical applications configured to be worn by a user, comprising a frame (15) that supports a glasses lens (2a, 2b), wherein the frame (15) comprises an RGB lighting system comprising RGB-emitting devices (16a, 16b, 16c) configured to emit light beams (B1, B2, B3); first optical systems (17a, 17b, 17c) configured to collimate at least partially said beams (B1, B2, B3) into collimated beams (B1c; B2c; B3c); wherein the frame (15) further comprises a display (3) configured to be illuminated by the RGB lighting system (16) by means of the collimated beams (B1c; B2c; B3c); to receive first images (I) from a first processing unit (10); to emit the first images (I) as second images (IE1) towards the glasses lens (2a, 2b), wherein the lens (2a, 2b) is configured to reflect the second images (IE1) coming from the display (3) as images projected (IP) towards an internal zone (51) of the glasses corresponding to an eye position zone of the user who is wearing the glasses in a configuration for use of the glasses. The invention moreover describes an augmented reality system for medical applications on a user comprising the augmented reality glasses (1) of the invention, biomedical instrumentation (100) configured to detect biomedical and / or therapeutic and / or diagnostic data of a user and to generate first data (D1) representative of operational parameters (OP_S) associated with the user, transmitting means (101) configured to transmit the first data (D1) to the glasses (1); wherein the glasses (1) comprise a first processing unit (10) equipped with a receiving module (102) configured to receive the first data (D1) comprising the operational parameters (OP_S) associated with the user.
Owner:BADIALI GIOVANNI +3

Ophthalmic instrument with adaptive optic subsystem that measures aberrations (including higher order aberrations) of a human eye and that provides a view of compensation of such aberrations to the human eye

An improved ophthalmic instrument for in-vivo examination of a human eye including a wavefront sensor that estimates aberrations in reflections of the light formed as an image on the retina of the human eye and a phase compensator that spatially modulates the phase of incident light to compensate for the aberrations estimated by the wavefront sensor Optical elements create an image of a fixation target at the phase compensator, which produces a compensated image of the fixation target that compensates for aberrations estimated by the wavefront sensor. The compensated image of the fixation target produced by the phase compensator is recreated at the human eye to thereby provide the human eye with a view of compensation of the aberrations the human eye as estimated by the wavefront sensor. The phase compensator preferably comprises a variable focus lens that compensates for focusing errors and a deformable mirror that compensates for higher order aberrations. The optical elements preferably comprise a plurality of beam splitters and a plurality of lens groups each functioning as an afocal telescope. In addition, instruments and systems are provided that exploit these capabilities to enable efficient prescription and / or dispensing of corrective optics (e.g., contact lens and glasses).
Owner:NORTHROP GRUMMAN SYST CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products