Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

10619 results about "Optical communication" patented technology

Optical communication, also known as optical telecommunication, is communication at a distance using light to carry information. It can be performed visually or by using electronic devices. The earliest basic forms of optical communication date back several millennia, while the earliest electrical device created to do so was the photophone, invented in 1880.

Manufacture method for polarization maintaining fiber and polarization maintaining fiber

The invention provides a manufacture method for polarization maintaining fiber and a polarization maintaining fiber, and relates to optical waveguide fibers in the field of fiber-optical communication and fiber optical sensors. The method comprises the following steps that: (1) two oppositely arranged open slots with a same shape are inwardly provided at a side surface of a glass mother rod, stress rods are machined to obtain a shape matching the open slots, and the centers of the cross sections of the two open slots and the center of circle in the cross section of the glass mother rod are in a same line; (2) the stress rods are respectively inserted into each open slot on the glass mother rod, and the assembled glass mother rod and stress rods are put in a cannula to form a preformed rod of the polarization maintaining fiber; (3) the preformed rod of the polarization maintaining fiber is drew to form the polarization maintaining fiber. According to the invention, the glass mother rod is provided with the open slots, and the stress rods are embedded in the open slots, thereby obtaining high process repeatability; inner surfaces of the open slots have high fineness, and the open slots have good symmetry, thereby improving processing efficiency; therefore, the optical performance and reliability of the polarization maintaining fiber are substantially improved.
Owner:RUIGUANG TELECOMM TECH CO LTD

Reactor and method of processing a semiconductor substrate

A reactor for processing a substrate includes a first housing defining a processing chamber and supporting a light source and a second housing rotatably supported in the first housing and adapted to rotatably support the substrate in the processing chamber. A heater for heating the substrate is supported by the first housing and is enclosed in the second housing. The reactor further includes at least one gas injector for injecting at least one gas into the processing chamber onto a discrete area of the substrate and a photon density sensor extending into the first housing for measuring the temperature of the substrate. The photon density sensor is adapted to move between a first position wherein the photon density sensor is directed to the light source and a second position wherein the photon density sensor is positioned for directing toward the substrate. Preferably, the communication cables comprise optical communication cables, for example sapphire or quartz communication cables. A method of processing a semiconductor substrate includes supporting the substrate in a sealed processing chamber. The substrate is rotated and heated in the processing chamber in which at least one reactant gas is injected. A photon density sensor for measuring the temperature of the substrate is positioned in the processing chamber and is first directed to a light, which is provided in the chamber for measuring the incident photon density from the light and then repositioned to direct the photon density sensor to the substrate to measure the reflection of the light off the substrate. The incident photon density is compared to the reflected light to calculate the substrate temperature.
Owner:KOKUSAI SEMICON EQUIP CORP

OCT using spectrally resolved bandwidth

The present invention is related to a system for optical coherence tomographic imaging of turbid (i.e., scattering) materials utilizing multiple channels of information. The multiple channels of information may be comprised and encompass spatial, angle, spectral and polarization domains. More specifically, the present invention is related to methods and apparatus for utilizing optical sources, systems or receivers capable of providing (source), processing (system) or recording (receiver) a multiplicity of channels of spectral information for optical coherence tomographic imaging of turbid materials. In these methods and apparatus the multiplicity of channels of spectral information that can be provided by the source, processed by the system, or recorded by the receiver are used to convey simultaneously spatial, spectral or polarimetric information relating to the turbid material being imaged tomographically. The multichannel optical coherence tomographic methods can be incorporated into an endoscopic probe for imaging a patient. The endoscope comprises an optical fiber array and can comprise a plurality of optical fibers adapted to be disposed in the patient. The optical fiber array transmits the light from the light source into the patient, and transmits the light reflected by the patient out of the patient. The plurality of optical fibers in the array are in optical communication with the light source. The multichannel optical coherence tomography system comprises a detector for receiving the light from the array and analyzing the light. The methods and apparatus may be applied for imaging a vessel, biliary, GU and/or GI tract of a patient.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

System and method for providing Jones matrix-based analysis to determine non-depolarizing polarization parameters using polarization-sensitive optical coherence tomography

Arrangement, system and method for a polarization effect for a interferometric signal received from sample in an optical coherence tomography (“OCT”) system are provided. In particular, an interferometric information associated with the sample and a reference can be received. The interferometric information is then processed thereby reducing a polarization effect created by a detection section of the OCT system on the interferometric signal. Then, an amount of a diattenuation of the sample is determined. The interferometric information can be provided at least partially along at least one optical fiber which is provided in optical communication with and upstream from a polarization separating arrangement. In another exemplary embodiment of the present invention, apparatus and method are provided for transmitting electromagnetic radiation to the sample. For example, at least one first arrangement can be provided which is configured to provide at least one first electromagnetic radiation. A frequency of radiation provided by the first arrangement can vary over time. At least one polarization modulating second arrangement can be provided which is configured to control a polarization state of at least one first electromagnetic radiation so as to produce at least one second electromagnetic radiation. Further, at least one third arrangement can be provided which is configured to receive the second electro-magnetic radiation, and provide at least one third electromagnetic radiation to the sample and at least one fourth electromagnetic radiation to a reference. The third and fourth electromagnetic radiations may be associated with the second electromagnetic radiation.
Owner:THE GENERAL HOSPITAL CORP

Apparatus for obtaining information for a structure using spectrally-encoded endoscopy teachniques and methods for producing one or more optical arrangements

Exemplary apparatus for obtaining information for a structure can be provided. For example, the exemplary apparatus can include at least one first optical fiber arrangement which is configured to transceive at least one first electromagnetic radiation, and can include at least one fiber. The exemplary apparatus can also include at least one second focusing arrangement in optical communication with the optical fiber arrangement. The second arrangement can be configured to focus and provide there through the first electromagnetic radiation. Further, the exemplary apparatus can include at least one third dispersive arrangement which is configured to receive a particular radiation which is the first electromagnetic radiation and/or the focused electromagnetic radiation, and forward a dispersed radiation thereof to at least one section of the structure. At least one end of the fiber can be directly connected to the second focusing arrangement and/or the third dispersive arrangement. In addition, an exemplary embodiment of a method for producing an optical arrangement can be provided. For example, a first set of optical elements having a first size in a first configuration and a second set of optical elements in cooperation with the second set and having a second size in a second configuration can be provided. The first and second sets can be clamped into a third set of optical elements. The third set can be polished, and a further set of optical elements may be deposited on the polished set.
Owner:THE GENERAL HOSPITAL CORP

Measurement system to measure a physiological condition in a body

Measurement system comprising a sensor wire provided, at its distal end, with a physiological condition sensor to measure a physiological condition inside a patient, and to provide measured data to an external device, the measurement system comprises a transceiver unit adapted to be connected to the proximal end of the sensor wire, and a communication unit arranged in connection with the external device. The transceiver unit is adapted to communicate, by a communication signal, with the communication unit, in order to transfer measured data to the external device. The communication signal, including the measured data, is generated by the transceiver unit and transferred as an output signal and the communication unit is arranged to be connected to a standard input / output connector of the external device and to communicate with the external device in accordance with an established standard, or in accordance with relevant parts of an established standard, e.g. BP22 or USB. The measurement system further comprises a physical optical communication link arranged between the transceiver unit and the communication unit, wherein the communication signal is an optical signal transferred by the optical communication link. The transceiver unit also comprises an energy means adapted to energize the sensor, the transceiver unit and also the optical communication link.
Owner:ST JUDE MEDICAL COORDINATION CENT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products