Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

809 results about "Symbol rate" patented technology

In digital communications, symbol rate, also known as baud rate and modulation rate, is the number of symbol changes, waveform changes, or signaling events across the transmission medium per time unit using a digitally modulated signal or a line code. The symbol rate is measured in baud (Bd) or symbols per second. In the case of a line code, the symbol rate is the pulse rate in pulses per second. Each symbol can represent or convey one or several bits of data. The symbol rate is related to the gross bitrate expressed in bits per second.

Multiplexer and Modulation Arrangements for Multi-Carrier Optical Modems

Consistent with the present disclosure, data, in digital form, is received by a transmit node of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data forming a plurality of corresponding carriers. The plurality of carriers are then optically combined with a fixed spacing combiner to form a superchannel of a fixed capacity. Accordingly, the number of carriers are selected according to a modulation format and symbol rate to realize the fixed capacity, for example. The superchannel is then transmitted over an optical communication path to a receive node. At the receive node, the superchannel is optically demultiplexed from a plurality of other superchannels. The plurality of carriers are then supplied to a photodetector circuit, which receives additional light at one of the optical signal carrier wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of the carriers is unnecessary.
Owner:INFINERA CORP

Asynchronous servo RRO detection employing interpolation

A repeatable read-out (RRO) detector employs one or more digital interpolators to interpolate asynchronous sample values that represent RRO data. The asynchronous sample values are read from a recording medium and generated by an A/D converter at a symbol rate, and the interpolators generate interpolated samples at at least one time in between the asynchronous sample value times. Each interpolated sample corresponding to some phase relative to that of the sample values generated by the A/D converter. The RRO detector receives 1) the asynchronous samples at symbol rate and 2) the interpolated samples to efficiently detect the encoded RRO data. An RRO address mark indicates when detection of encoded RRO data starts, and is employed to select those samples suitable for RRO data detection. Detection of the RRO address mark employs peak detection among filtered asynchronous and interpolated samples. The process of peak detection adjusts the current best phase for sample selection. When the RRO address mark is found, the corresponding best phase corresponds to either asynchronous sampled values or interpolated samples that are subsequently selected for RRO data detection, termed best samples. Once the best phase is selected, the RRO data detector uses that information along with RRO encoding constraints to decode the encoded RRO data from the best samples.
Owner:AVAGO TECH INT SALES PTE LTD

Frame structure for an adaptive modulation wireless communication system

A method of assigning downlink time slots to receive units where the units may generate data using different modulation schemes. The method preferably assigns the downlink time slots as a function of the complexity of modulation schemes employed by the units. Further, the method preferably assigns the time slots from the least complex modulation scheme to the most complex scheme. The method may further assign uplink time slots to transmit units where the transmit units may generate data using different modulation schemes. The method preferably assigns the uplink time slots as a function of the complexity of modulation schemes employed by the uplink units. Further, the method preferably assigns the uplink time slots from the least complex modulation scheme to the most complex scheme. In other embodiments, the downlink time slots are assigned as a function of the bit per symbol rate employed by the receive units, preferably from the lowest bit per symbol rate to the highest bit per symbol rate. Further, the uplink time slots are assigned as a function of the bit per symbol rate employed by the transmit units, preferably from the lowest bit per symbol rate to the highest bit per symbol rate. The present invention is also a method of simplifying the encoding of a predetermined number of bits of data into frames. The method adds error coding bits so that a ratio of the frame length times the baud rate of the frame times the bit packing ratio of the data divided the total bits of data is always an integer. The method may also convolutionally encode the bits of data so that the same equation is also always an integer. The present invention is also a method of updating the weights of a FIR filter where the filter processes symbols having variable modulation rates. When the modulation rate of the incoming symbols changes, the weights corresponding to the first symbol having the new modulation rate are changed based as the symbol propagates through the filter.
Owner:WI LAN INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products