Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

11078results about "Error prevention/detection by diversity reception" patented technology

Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system

Channel state information (CSI) can be used by a communications system to precondition transmissions between transmitter units and receiver units. In one aspect of the invention, disjoint sub-channel sets are assigned to transmit antennas located at a transmitter unit. Pilot symbols are generated and transmitted on a subset of the disjoint sub-channels. Upon receipt of the transmitted pilot symbols, the receiver units determine the CSI for the disjoint sub-channels that carried pilot symbols. These CSI values are reported to the transmitter unit, which will use these CSI values to generate CSI estimates for the disjoint sub-channels that did not carry pilot symbols. The amount of information necessary to report CSI on the reverse link can be further minimized through compression techniques and resource allocation techniques.
Owner:QUALCOMM INC

Multicarrier Sub-Layer for Direct Sequence Channel and Multiple-Access Coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and / or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

High efficiency high performance communications system employing multi-carrier modulation

Transmitter and receiver units for use in a communications system and configurable to provide antenna, frequency, or temporal diversity, or a combination thereof, for transmitted signals. The transmitter unit includes a system data processor, one or more modulators, and one or more antennas. The system data processor receives and partitions an input data stream into a number of channel data streams and further processes the channel data streams to generate one or more modulation symbol vector streams. Each modulation symbol vector stream includes a sequence of modulation symbol vectors representative of data in one or more channel data streams. Each modulator receives and modulates a respective modulation symbol vector stream to provide an RF modulated signal, and each antenna receives and transmits a respective RF modulated signal. Each modulator may include an inverse (fast) Fourier transform (IFFT) and a cyclic prefix generator. The IFFT generates time-domain representations of the modulation symbol vectors, and the cyclic prefix generator repeats a portion of the time-domain representation of each modulation symbol vector. The channel data streams are modulated using multi-carrier modulation, e.g., OFDM modulation. Time division multiplexing (TDM) may also be used to increase flexibility.
Owner:QUALCOMM INC

Multicarrier sub-layer for direct sequence channel and multiple-access coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and / or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Communication method and apparatus using analog and digital hybrid beamforming

A communication method and apparatus using analog and digital hybrid beamforming are provided. The method includes receiving a first message including a measurement and selection condition for hybrid beamforming from a Base Station (BS), measuring channels of a plurality of BS transmission beams, selecting at least one BS transmission beam based on channel measurements, transmitting report information about the selected at least one BS transmission beam to the BS, receiving from the BS a second message, estimating an effective channel matrix for the selected final BS transmission beam according to the measurement and report condition, determining feedback information for digital beamforming of the BS based on the effective channel matrix, transmitting the determined feedback information to the BS, and receiving a data burst from the BS according to a Multiple Input Multiple Output (MIMO) mode and / or a configuration scheduled based on the feedback information.
Owner:SAMSUNG ELECTRONICS CO LTD

Adaptive time diversity and spatial diversity for OFDM

An adaptable orthogonal frequency-division multiplexing system (OFDM) that uses a multiple input multiple output (MIMO) to having OFDM signals transmitted either in accordance with time diversity to reducing signal fading or in accordance with spatial diversity to increase the data rate. Sub-carriers are classified for spatial diversity transmission or for time diversity transmission based on the result of a comparison between threshold values and at least one of three criteria. The criteria includes a calculation of a smallest eigen value of a frequency channel response matrix and a smallest element of a diagonal of the matrix and a ratio of the largest and smallest eigen values of the matrix.
Owner:APPLE INC

Multi-carrier communications with group-based subcarrier allocation

A method and apparatus for subcarrier selection for systems is described. In one embodiment, a method for subcarrier selection for a system employing orthogonal frequency division multiple access (OFDMA) comprises partitioning subcarriers into groups of at least one cluster of subcarriers, receiving an indication of a selection by the subscriber of one or more groups in the groups, and allocating at least one cluster in the one or more groups of clusters selected by the subcarrier for use in communication with the subscriber.
Owner:KAON SYST +1

Multiple-input, multiple-output (MIMO) systems with multiple transmission modes

Techniques to transmit data on a number of transmission channels in a multi-channel communication system using multiple transmission schemes requiring less channel-state information (CSI). These schemes may include a partial-CSI transmission scheme that transmits a single data stream on each transmit antenna selected for use and a “beam-forming” transmission scheme that allocates all transmit power to a single transmission channel having the best performance. Each transmission scheme may provide good or near-optimum performance for a specific range of operating conditions (or operating SNRs). These multiple transmission schemes may then be combined in a piece-wise fashion to form a “multi-mode” transmission scheme that covers the full range of operating conditions supported by the MIMO system. The specific transmission scheme to be used for data transmission at any given moment would then be dependent on the specific operating condition experienced by the system at that moment.
Owner:QUALCOMM INC

Communication channel optimization systems and methods in multi-user communication systems

Systems and methods of optimizing communication channels in multi-user communication systems are provided. Coding weights are determined based on communication channel state information for communication channels between a transmitter and multiple receivers. The coding weights are applied to communication signals to be transmitted from the transmitter to the receivers. Each receiver decodes received signals using inverses of the coding weights. Embodiments of the invention support multi-user MIMO (Multiple Input Multiple Output) where each receiver has fewer antennas than the transmitter, and enhance system performance if the total number of antennas at all of the receivers exceeds the number of antennas at the transmitter.
Owner:APPLE INC

Method and apparatus for preamble training in a multiple antenna communication system

Methods and apparatus are provided for communicating data in a multiple antenna communication system having N transmit antennas. According to one aspect of the invention, a header format includes a legacy preamble having at least one legacy long training field and an extended portion having at least N additional long training fields on each of the N transmit antennas. The N additional long training fields may be tone interleaved across the N transmit antennas and are used for MIMO channel estimation. The extended portion may include a short training field for power estimation. The short training field may be tone interleaved across the N transmit antennas and have an extended duration to support beam steering.
Owner:AVAGO TECH INT SALES PTE LTD

Allocation of radio resource in orthogonal frequency division multiplexing system

An uplink capacity is increased by a method in which more than two mobile stations simultaneously use a radio resource allocated to one mobile station. A method of allocating a radio resource in an orthogonal frequency division multiplexing system comprises receiving data associated with a radio resource allocation map from a base station, wherein the radio allocation map comprises control parameters for transmitting uplink data to the base station. The control parameters comprises orthogonal pilot pattern indicator for using orthogonal pilot patterns associated with supporting at least concurrent dual transmission by at least one mobile station, and for use in the same frequency band and same time duration. The orthogonal pilot patterns comprises at least a minus pilot being used for an uplink basic allocation unit. The mobile station then transmits uplink data to the base station by using the orthogonal pilot patterns.
Owner:LG ELECTRONICS INC

System and method for distributed input distributed output wireless communications

A system and method are described for compensating for frequency and phase offsets in a multiple antenna system (MAS) with multi-user (MU) transmissions (“MU-MAS”). For example, a method according to one embodiment of the invention comprises: transmitting a training signal from each antenna of a base station to one or each of a plurality of wireless client devices, one or each of the client devices analyzing each training signal to generate frequency offset compensation data, and receiving the frequency offset compensation data at the base station; computing MU-MAS precoder weights based on the frequency offset compensation data to pre-cancel the frequency offset at the transmitter; precoding training signal using the MU-MAS precoder weights to generate precoded training signals for each antenna of the base station; transmitting the precoded training signal from each antenna of a base station to each of a plurality of wireless client devices, each of the client devices analyzing each training signal to generate channel characterization data, and receiving the channel characterization data at the base station; computing a plurality of MU-MAS precoder weights based on the channel characterization data, the MU-MAS precoder weights calculated to pre-cancel frequency and phase offset and / or inter-user interference; precoding data using the MU-MAS precoder weights to generate precoded data signals for each antenna of the base station; and transmitting the precoded data signals through each antenna of the base station to each respective client device.
Owner:REARDEN LLC

Channels estimation for multiple input-multiple output, orthogonal frequency division multiplexing (OFDM) system

The distortion in the sub-carrier signals is determined by transmitting known values that are incorporated into the preamble portion of the frame and / or are incorporated into pilot symbols that are inserted into the data portion of the frame. The receiver typically receives these known values in a distorted form and then processes the distorted values together with the original known values to obtain a channel response. The channel response is then used to estimate the frequencies at which the channels are received.
Owner:APPLE INC

Apparatus and method for transmitting/receiving channel quality information of subcarriers in an orthogonal frequency division multiplexing system

A method of transmitting / receiving channel quality information (CQI) of subcarriers in an OFDM system where data is transmitted on the subcarriers via one or more transmit antennas. The subcarriers are grouped into subcarrier groups each having at least one subcarrier and further grouped into subgroups each having one or more subgroups. A user equipment generates CQIs for one or more allocated subcarrier groups and the transmit antennas or CQIs for the allocated subcarrier groups, the subgroups of the subcarrier groups, and the transmit antennas. The group CQIs and the subgroup CQIs are transmitted to a Node B in one or more physical channel frames.
Owner:SAMSUNG ELECTRONICS CO LTD

Method and system for wireless communication networks using relaying

InactiveUS20050014464A1Easy to adjustCharacterization is accurate and reliableSite diversityTransmission path divisionRadio channelTransmitter
The present invention relates to wireless networks using relaying. In the method according to the present invention of performing communication in a two-hop wireless communication network, a transmitter 210, a receiver 220 and at least one relay station 215 are engaged in a communication session. The relay station 215 forwards signals from a first link between the transmitter 210 and the relay station 215 to a second link between the relay stations 215 and the receiver 220. The forwarding performed by the at least one relay station 215 is adapted as a response to estimated radio channel characteristics of at least the first link. Preferably the forwarding is adapted as a response to estimated radio channel characteristics of both the first and second link.
Owner:TELEFON AB LM ERICSSON (PUBL)

MIMO precoding enabling spatial multiplexing, power allocation and adaptive modulation and coding

In a closed-loop wireless communication system, a codebook-based feedback mechanism is provided to enable non-unitary precoding for multi-stream transmission, where in each stream is optimized with suitable transmission power allocation and AMC. The codebook-based feedback mechanism uses a precoding codebook having a power allocation matrix which is constrained to specify that beamforming always applies full power to a predetermined beam. With this constraint, a one-bit power allocation feedback index may be used to switch between beamforming and spatial multiplexing.
Owner:APPLE INC

Multiple access method and system

A wireless communication system transmits data on multiple carriers simultaneously to provide frequency diversity. Carrier interference causes a narrow pulse in the time domain when the relative phases of the multiple carriers are zero. Selection of the frequency separation and phases of the carriers controls the timing of the pulses. Both time division of the pulses and frequency division of the carriers achieves multiple access. Carrier interferometry is a basis from which other communication protocols can be derived. Frequency hopping and frequency shifting of the carriers does not change the pulse envelope if the relative frequency separation and phases between the carriers are preserved. Direct sequence CDMA signals are generated in the time domain by a predetermined selection of carrier amplitudes. Each pulse can be sampled in different phase spaces at different times. This enables communication in phase spaces that are not detectable by conventional receivers. The time-dependent phase relationship of the carriers provides automatic scanning of a beam pattern transmitted by an antenna array. In waveguide communications, the carrier frequencies and phase space may be matched to the chromatic dispersion of an optical fiber to increase the capacity of the fiber.
Owner:DEPARTMENT 13 INC

Method for processing csi-rs in wireless communication system

A method for processing a Channel State Information Reference Signal (CSI-RS) in a wireless communication system based on a multiple access scheme is provided. The CSI-RS transmission method defines a plurality of CSI-RS patterns, assigns the CSI-RS patterns to individual cells, uses the CSI-RSs alternately per Physical Resource Block (PRB) so as to utilize the transmission powers of all antenna ports for transmitting CSI-RSs, transmits Coordinated Multi Point (CoMP) CSI-RSs and non-CoMP CSI-RSs separately, and mutes specific resources in association with the CSI-RS pattern of adjacent cells.
Owner:SAMSUNG ELECTRONICS CO LTD

Apparatus and method for scheduling resource in a multiuser MIMO radio communication system

In a multiuser Multiple Input Multiple Output (MIMO) radio communication system, a transmitter receives channel quality information transmitted from receivers, schedules resource for the receivers within a corresponding scheduling epoch based on the received channel quality information. Thereafter, the transmitter pre-codes signals to be transmitted to the resource-scheduled receivers in a predetermined coding method before transmission, thereby maximizing system transmission efficiency.
Owner:SAMSUNG ELECTRONICS CO LTD +1

Space-time processing for multiple-input, multiple-output, wireless systems

In a MIMO system the signals transmitted from the various antennas are processed so as to improve the ability of the receiver to extract them from the received signal even in the face of some correlation. More specifically the number of bit streams that is transmitted simultaneously is adjusted, e.g., reduced, depending on the level of correlation, while multiple versions of each bit stream, variously weighted, are transmitted simultaneously. The variously weighted versions are combined to produced one combined weighted signal. The receiver processes the received signals in the same manner as it would have had all the signals reaching the receive antennas been uncorrelated. The weight vectors may be determined by the forward channel transmitter using the channel properties of the forward link which are made known to the transmitter of the forward link by being transmitted from the receiver of the forward link by the transmitter of the reverse link or the weight vectors may be determined by the forward channel transmitter using the channel properties of the forward link and the determined weight vectors are made known to the transmitter of the forward link by being transmitted from the receiver of the forward link by the transmitter of the reverse link. The channel properties used to determine the weight vectors may include the channel response from the transmitter to the receiver and the covariance matrix of noise and interference measured at the receiver.
Owner:ALCATEL-LUCENT USA INC

Method and apparatus of transmitting information in wireless communication system

A method and an apparatus of transmitting information in a wireless communication system are provided. The method includes transmitting first information based on a first resource index through a first antenna and transmitting second information based on a second resource index through a second antenna.
Owner:LG ELECTRONICS INC

Link adaptation for MIMO transmission schemes

MIMO transmission methods are applied to communicaiton systems in which a transmitter has more than one transmit antenna and a receiver has more than one receive antenna. Information to be transmitted is divided into a plurality of subsignals according to the number of used transmit antennas and each subsignal is processed separately before it is emitted by the respective transmit antenna. In the receiver the different receive signals are processed thus that subsignals are detected and decoded and the contribution of each detected and decoded subsignal is subtracted from the receive signals and whereby a feedback channel from receiver to transmitter is used to send control information to the transmitter depending on the receive situation. In order to optimize the usage of the MIMO channel the invention proposes the in the receiver the link quality of each subsignal is determined and information of each subsignal is transmitted to the receiver via the feedback channel and that in the transmitter properties of the subsignals are controlled by the link quality information.
Owner:TELEFON AB LM ERICSSON (PUBL)

Cooperative MIMO in multicell wireless networks

A method and system for cooperative multiple-input multiple output (MIMO) transmission operations in a multicell wireless network. Under the method, antenna elements from two or more base stations are used to from an augmented MIMO antenna array that is used to transmit and receive MIMO transmissions to and from one or more terminals. The cooperative MIMO transmission scheme supports higher dimension space-time-frequency processing for increased capacity and system performance.
Owner:ADAPTIX

Methods and Systems for Enabling Feedback in Wireless Communication Networks

Aspects of the present invention provide additional MAC functionality to support the PHY features of a wireless communication system framework. The additional MAC functionality aids in enabling feedback from wireless terminals to base stations. In some aspects of the invention the feedback is provided on an allocated feedback channel. In other aspects of the invention the feedback is provided by MAC protocol data units (PDU) in a header, mini-header, or subheader. The feedback may be transmitted from the wireless terminal to the base station autonomously by the wireless terminal or in response to an indication from the base station that feedback is requested. Aspects of the invention also provide for allocating feedback resources to form a dedicated feedback channel. One or more of these enhancements is included in a given implementation. Base stations and wireless terminals are also described upon which methods described herein can be implemented.
Owner:APPLE INC

Multi-user MIMO-SDMA for finite rate feedback systems

A multi-user MIMO downlink beamforming system with limited feedback (200) is provided to enable preceding for multi-stream transmission, where a channel codeword (ui) and one or more channel quality indicator values (CQIA, CQIB) are computed at the user equipment (201.i) on the basis of maximizing a predetermined SINR performance metric (ρi) which estimates the receive signal-to-noise-ratio (SINR) at the user equipment (201.i). The computed codeword (ui) and CQI values (or differential values related thereto) are quantized and fed back to help the base station (210) which applies a correction to the appropriate CQI value in the course of designing the transmit beamforming vectors w and determining the appropriate modulation and coding level to be used for downlink data transmission.
Owner:APPLE INC

Soft handoff for OFDM

The present invention relates to soft handoffs in an OFDM system. Each mobile terminal measures pilot signal strengths of transmissions from adjacent base stations. If the pilot signal strength for a base station exceeds the defined threshold, that base station is added to an active set list. Each mobile terminal notifies the base stations of their active set lists. By providing the set list to the base station controller and the servicing base station, the mobile terminal identifies the sole servicing base station or triggers a soft handoff mode when multiple base stations appear on the active set list. The soft handoff mode uses a combination of scheduling and space-time coding to affect efficient and reliable handoffs.
Owner:MICROSOFT TECH LICENSING LLC

OFDMA with adaptive subcarrier-cluster configuration and selective loading

A method and apparatus for subcarrier selection for systems is described. In one embodiment, the system employs orthogonal frequency division multiple access (OFDMA). In one embodiment, a method for subcarrier selection comprises each of multiple subscribers measuring channel and interference information for subcarriers based on pilot symbols received from a base station, at least one of subscribers selecting a set of candidate subcarriers, providing feedback information on the set of candidate subcarriers to the base station, and the one subscriber receiving an indication of subcarriers of the set of subcarriers selected by the base station for use by the one subscriber.
Owner:ADAPTIX +1

MIMO OFDM system

A MIMO OFDM system includes a plurality of space-time encoders for encoding respective data blocks with independent space-time codes. The transformed data block signals are transmitted by a plurality of transmit antennas and received by a plurality of receive antennas. The received data is pre-whitened prior to maximum likelihood detection. In one embodiment, successive interference cancellation can be used to improve system performance. Channel parameter estimation can be enhanced by weighting the channel impulse response estimates based upon a deviation from average.
Owner:AT&T INTPROP I L P
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products