Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

5506 results about "Wavelet" patented technology

A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases, and then decreases back to zero. It can typically be visualized as a "brief oscillation" like one recorded by a seismograph or heart monitor. Generally, wavelets are intentionally crafted to have specific properties that make them useful for signal processing. Using a "reverse, shift, multiply and integrate" technique called convolution, wavelets can be combined with known portions of a damaged signal to extract information from the unknown portions.

Multicarrier Sub-Layer for Direct Sequence Channel and Multiple-Access Coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and/or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Watermarking scheme for image authentication

A digital watermarking process whereby an invisible watermark inserted into a host image is utilized to determine whether or not the image has been altered and, if so, where in the image such alteration occurred. The watermarking method includes the steps of providing a look-up table containing a plurality of coefficients and corresponding values; transforming the image into a plurality of blocks, wherein each block contains coefficients matching coefficients in the look-up table; and embedding the watermark in the image by performing the following substeps for at least some of the blocks: First, a coefficient is selected for insertion of a marking value representative of a corresponding portion of the watermark. Next, the value of the selected coefficient to used to identify a corresponding value in the look-up table. Finally, the identified coefficient is left unchanged if the corresponding value is the same as the marking value, and is changed if the corresponding value is different from the marking value. After the insertion of the watermark, the image may be stored in a lossy-compression form, thus permitting efficient storage and distribution. Moreover, the method may be used to produce two output signals for authentication: (1) a meaningful pattern to facilitate a quick visual check, and (2) an additional signal to detect unauthorized alteration. The method can be applied to an image compressed using JPEG or other techniques, such as Wavelet compression, and the marked image can be kept in the compressed format. Any alteration made on the marked image can be localized, making the method suitable for use in a "trustworthy" digital camera or camcorder.
Owner:TRUSTEES OF THE UNIV OF PRINCETON THE

Method for diagnosing heart disease, predicting sudden death, and analyzing treatment response using multifractal analysis

InactiveUS6993377B2Reducing minimum sizeIncreased analytic detailMedical simulationMedical report generationTest batterySudden death
A method of analyzing electrocardiogram (EKG) data for use in the diagnosis of heart disease, prognosis of cardiac conditions, and the monitoring of heart disease therapies is disclosed. The method utilizes a wavelet-based multifractal analysis with one or more of (1) a discrete wavelet smoothing step to remove the effects of abnormal beats; (2) “Levy flight” analysis to detect the frequency of abnormal beats known to adversely affect the multifractal (MF) analysis; and (3) MF alpha analysis, a multifractal extension of monofractal short term (ST) alpha analysis. The invention further comprises an EKG test battery comprising Levy flight anomalous beat/beat cluster screening, followed by (ST) MF alpha analysis and MF Holder analysis (when validated by the Levy flight analysis). The wavelet smoothing step can also be used to classify human EKGs by observing the effect of sequential smoothing on the MF Holder coefficient. Alternative choices to the wavelet smoothing approach to removal of abnormal beat effects include probability distribution function analysis to determine the MF Holder coefficient directly, abnormal beat ridge skeleton removal to remove the offending beats based on a direct multifractal spectrum calculation, and the calculation of various types of entropy coefficients for the EKG time series.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ARKANSAS

High-resolution, three-dimensional whole body ultrasound imaging system

This invention incorporates the techniques of geophysical technology into medical imaging. Ultrasound waves are generated from multiple, simultaneous sources tuned for maximum penetration, resolution, and image quality. Digitally recorded reflections from throughout the body are combined into a file available for automated interpretation and wavelet attribute analyses. Unique points within the object are imaged from multiple positions for signal-to-noise enhancement and wavelet velocity determinations. This system describes gaining critical efficiencies by reducing equation variables to known quantities. Sources and receivers are locked in invariant, known positions. Statistically valid measurements of densities and wavelet velocities are combined with object models and initial parameter assumptions. This makes possible three-dimensional images for viewing manipulation, mathematical analyses, and detailed interpretation, even of the body in motion. The invention imposes a Cartesian coordinate system on the image of the object. This makes reference to any structure within the object repeatable and precise. Finally, the invention teaches how the recording and storing of the received signals from a whole body analysis makes a subsequent search for structures and details within the object possible without reexamining the object.
Owner:HOLMBERG LINDA JEAN

Progressive image transmission using discrete wavelet transforms

Disclosed herein is a method of storing and of progressively transferring a still image so that it can be conveniently previewed during the transfer and so that a user can terminate the transfer at an early stage if the image turns out to be undesirable. The methods of the invention include transforming the image into a plurality of decomposition levels using a discrete wavelet transform. Each decomposition level comprises a plurality of subimages which allow reconstruction of an image representation of the still image. The decomposition levels are transmitted beginning with a base decomposition level providing a low level of image resolution and then proceeding with decomposition levels providing increasingly higher levels of image resolution. Within each decomposition level, rows of the various subimages are arranged or interlaced together in contiguous blocks, so that all data for a single row, at a single decomposition level, is transmitted together. At the receiving end of the transfer, the row blocks are reconstructed and displayed as they are received. The invention enables the initial display of a low resolution image which is gradually updated and sharpened, on a row-by-row basis, until a desired high resolution is achieved. The user may terminate the transfer at any point.
Owner:MICROSOFT TECH LICENSING LLC

Methods for embedding image, audio and video watermarks in digital data

A method for embedding an entire image, audio or video watermark sequence within another image, audio or video data sequence with minimum loss of data quality is presented. The method exploits the de-correlation property of data coefficients in the orthogonal transform domain, similar to the application in data compression through transform coding. The present invention describes the usage of a Discrete Cosine Transform as the embedding domain. However, other orthogonal transforms such as Fourier, Walsh-Hadamard, Haar, Sine and Wavelet can also be used for this operation. A unique key derived adaptively from spatial locations registering the thresholds of the ac transform energies is used to unlock or de-watermark the embedded image or audio sequence. Moreover, an exponential filter has been developed to compress and expand the watermark coefficients prior to the embedding and retrieval process. The method can be used in resolving multimedia copyright protection issues arising on the Internet and in the music industry, such as the inclusion of a company's logo or an artist's recorded voice. The method can also be incorporated as a built-in feature for digital recording devices, such as still and video cameras, as well as more recent devices such as VCD and DVD players. Moreover, the method can be applied to the commercial and service sectors, where security in transmission and reception of private information in terms of speech or image is of the utmost importance.
Owner:ST ELECTRONICS INFO SECURITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products