Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

41245 results about "Carrier signal" patented technology

In telecommunications, a carrier wave, carrier signal, or just carrier, is a waveform (usually sinusoidal) that is modulated (modified) with an input signal for the purpose of conveying information. This carrier wave usually has a much higher frequency than the input signal does. The purpose of the carrier is usually either to transmit the information through space as an electromagnetic wave (as in radio communication), or to allow several carriers at different frequencies to share a common physical transmission medium by frequency division multiplexing (as in a cable television system, for example). The term originated in radio communication, where the carrier wave is the radio wave which carries the information (modulation) through the air from the transmitter to the receiver. The term is also used for an unmodulated emission in the absence of any modulating signal.

Method and system for power delivery to a headset

A power delivery method and system for powering a headset. A power signal is combined with an audio signal to form a composite signal that is communicated over a shared channel to the headset. The power signal is generated by modulating a carrier signal with a modulation signal. The modulation signal is derived from the amplitude of the audio signal so that the peak levels of the composite signal do not exceed the maximum allowable output of an audio I / O circuit driving the headset.
Owner:VOCOLLECT

Multicarrier Sub-Layer for Direct Sequence Channel and Multiple-Access Coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and/or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Radio communication system

There is disclosed a radio communication system in which a constitution of a base station and further a control station can be simplified. A radio communication system according to the present invention converts a received signal received by a plurality of antenna elements in a base station to a signal of different frequency band, and then conflates the converted signal in order to generate sub-carrier wave multiplex signal. The signal is converted to an optical signal, and then the optical signal is transmitted to a control station via an optical fiber. Or the control station performs weighting to phase of the transmitted signal transmitted from a plurality of antennas of a base station, and then performs frequency conversion to different frequency band, and then conflates the converted signal in order to generate the sub-carrier wave multiplex signal. The signal is converted to an optical signal, and then an optical signal is transmitted to the base station side via the optical fiber. The control station and the base station divides the received sub-carrier wave multiplex signal by each frequency band, and then the frequency of the divided signals are converted to the same frequency band in order to generate the transmitted / received signal of each antenna element. By such a constitution, it is possible to reduce constituent of the optical transmission components to the minimum and to simplify the constitution of the base station. Furthermore, it is possible to maintain the relative phase difference and the relative intensity of the transmitted / received signal of each antenna element. Because of this, it is possible to estimate an arrival direction of the received signal and to control radiation beam pattern of the transmitted signal.
Owner:KK TOSHIBA

High efficiency high performance communications system employing multi-carrier modulation

Transmitter and receiver units for use in a communications system and configurable to provide antenna, frequency, or temporal diversity, or a combination thereof, for transmitted signals. The transmitter unit includes a system data processor, one or more modulators, and one or more antennas. The system data processor receives and partitions an input data stream into a number of channel data streams and further processes the channel data streams to generate one or more modulation symbol vector streams. Each modulation symbol vector stream includes a sequence of modulation symbol vectors representative of data in one or more channel data streams. Each modulator receives and modulates a respective modulation symbol vector stream to provide an RF modulated signal, and each antenna receives and transmits a respective RF modulated signal. Each modulator may include an inverse (fast) Fourier transform (IFFT) and a cyclic prefix generator. The IFFT generates time-domain representations of the modulation symbol vectors, and the cyclic prefix generator repeats a portion of the time-domain representation of each modulation symbol vector. The channel data streams are modulated using multi-carrier modulation, e.g., OFDM modulation. Time division multiplexing (TDM) may also be used to increase flexibility.
Owner:QUALCOMM INC

Multicarrier sub-layer for direct sequence channel and multiple-access coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and / or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Method and apparatus for transmitting uplink control information for carrier aggregated spectrums

Methods and apparatus for transmitting uplink control information (UCI) in carrier aggregated spectrums are disclosed. UCI may include, but is not limited to, Precoding Matrix Indicator (PMI), Rank Indication (RI), Channel Quality Indicator (CQI), Acknowledge / Not Acknowledge (ACK / NACK) and Scheduling Request (SR). For symmetric carrier aggregation, uplink (UL) and downlink (DL) component carriers may be paired and use physical uplink control channel (PUCCH) in each UL component carrier to send UCI for the corresponding DL component carrier. For asymmetric carrier aggregation, methods are provided for UCI transmission and resource allocation depending on component carrier configuration or assignment. Methods are provided for multiple and single component carrier configurations that may further provide backward compatibility.
Owner:INTERDIGITAL PATENT HLDG INC

Power supply system

A power supply system according to the present invention comprises: a primary side coil; a power transmission apparatus having a primary side circuit for feeding a pulse voltage resulted from switching a DC voltage which is obtained by rectifying and smoothing a commercial power supply to the primary side coil; a secondary side coil magnetically coupled to the primary side coil; and power reception equipment having a secondary side circuit for rectifying and smoothing voltage induced across the secondary side coil, wherein there is provided a power adjusting section for adjusting a level of power to be transmitted according to power required by the power reception equipment. The power adjusting section has, in the primary side circuit, a carrier wave oscillation circuit for supplying a carrier wave to the primary side coil, a demodulation circuit for demodulating a modulated signal transmitted from the secondary circuit and received by the primary side coil, and a power change-over section for selecting a level of power to be transmitted according to an information signal from the power reception equipment and demodulated by the demodulation circuit. The power adjusting section has, in the secondary side circuit, a modulation circuit for modulating the carrier wave fed from the carrier wave oscillation circuit and received by the secondary side coil with the information signal from the power reception equipment and transmitting the modulated signal.
Owner:SHARP KK

Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems

An apparatus and process for allocating carriers in a multi-carrier system is described. In one embodiment, the process comprises determining a location of a subscriber with respect to a base station, selecting carriers from a band of carriers to allocate to the subscriber according to the location of the subscriber with respect to the base station, and allocating selected carriers to the subscriber.
Owner:KAON SYST +1

Channels estimation for multiple input-multiple output, orthogonal frequency division multiplexing (OFDM) system

The distortion in the sub-carrier signals is determined by transmitting known values that are incorporated into the preamble portion of the frame and / or are incorporated into pilot symbols that are inserted into the data portion of the frame. The receiver typically receives these known values in a distorted form and then processes the distorted values together with the original known values to obtain a channel response. The channel response is then used to estimate the frequencies at which the channels are received.
Owner:APPLE INC

Method and apparatus for illumination and communication

The present invention provides a method and apparatus of using light-emitting elements for illumination as well as communication of data, wherein potential flicker due to sub-fusion frequency data correlations can be reduced compared to prior art techniques, while reducing redundancy in the data transmission. The intensity of the illumination from the light-emitting elements is controlled by a dimming signal such as a pulse width modulation (PWM) signal or a pulse code modulation (PCM) signal, for example. An amplitude-modulated data signal is then superimposed on the dimming signal for communication of data. The dimming signal thus acts as a carrier signal for the data signal. A sensing means is then used to receive the data signal by detecting all or part of the illumination from the light-emitting elements. The data signal can subsequently be extracted from the detected illumination.
Owner:SIGNIFY HLDG BV

On-demand data system

Disclosed is a system for allowing on-demand delivery of data, such as MPEG-2 compressed video data, to a subscriber from a content server. The system utilizes a managed IP network that is coupled to the one or more content servers that allows the content servers to deliver data such as video, audio, and textual data with a guaranteed quality of service that is at least as good as broadcast quality service. The managed IP network is connected to a head end or other local cable service provider where video is delivered locally to subscribers. The IP transport data is translated to MPEG transport data, multiplexed onto an MPEG transport system, digitally modulated onto an rf carrier and up-converted to a specific frequency channel. The signal is then applied to the cable for delivery to the subscriber. Upstream signaling occurs through a set top box or computer that is connected to the cable and subsequently to a digital modulator / demodulator and ISP to a managed IP network 66. Low band signals can also be transmitted from the content servers back to the set top box or computer indicating confirmation of an order. Also, control signals such as stop, rewind, fast-forward, and slow can be transmitted back to the content server to control the transmission of data from the content server to the subscriber.
Owner:CABLE TELEVISION LAB

Multiple access method and system

A wireless communication system transmits data on multiple carriers simultaneously to provide frequency diversity. Carrier interference causes a narrow pulse in the time domain when the relative phases of the multiple carriers are zero. Selection of the frequency separation and phases of the carriers controls the timing of the pulses. Both time division of the pulses and frequency division of the carriers achieves multiple access. Carrier interferometry is a basis from which other communication protocols can be derived. Frequency hopping and frequency shifting of the carriers does not change the pulse envelope if the relative frequency separation and phases between the carriers are preserved. Direct sequence CDMA signals are generated in the time domain by a predetermined selection of carrier amplitudes. Each pulse can be sampled in different phase spaces at different times. This enables communication in phase spaces that are not detectable by conventional receivers. The time-dependent phase relationship of the carriers provides automatic scanning of a beam pattern transmitted by an antenna array. In waveguide communications, the carrier frequencies and phase space may be matched to the chromatic dispersion of an optical fiber to increase the capacity of the fiber.
Owner:DEPARTMENT 13 INC

Real-time wireless power transfer control for passive backscattering devices

A method and apparatus is disclosed herein for real-time wireless power transfer control. In one embodiment, a system comprises: an RF-energy harvesting sensor tag operable to generate a first backscatter signal and at least one base station operable to deliver RF power to the sensor tag by emitting a first waveform comprising a plurality of subcarriers, wherein the first backscatter signal is generated by the sensor tag by modulated scattering of the first waveform as incident upon the sensor tag, and further wherein the at least one base station subsequently emits a second waveform determined at least in part by a closed-loop feedback control algorithm responsive to measurements of the first backscatter signal.
Owner:RICOH KK +1

Orthogonal superposition coding for direct-sequence communications

An adaptation to Carrier Interferometry synthesis and analysis provides for complex coding and decoding in a sliding window transform. Coding and decoding functionality can be extended to spatial processing in systems employing multiple transceiver elements. Poly-amplitude codes permit successive interference cancellation in spatial and frequency-domain processing. Handoffs in cellular systems are facilitated by selecting spectral / base station combinations that optimize link performance.
Owner:DEPARTMENT 13 INC

Apparatus and method for supporting transmission of sounding reference signals from multiple antennas

Methods and apparatuses, through the use of a Downlink Control Indication (DCI) format or through higher layer signaling, for dynamic activation and deactivation of Sounding Reference Signal (SRS) transmissions from User Equipments (UEs) in an UL Component Carrier (CC) with configured SRS transmissions, the dynamic configuration of SRS transmissions parameters, the dynamic activation and configuration of SRS transmissions in an UL CC without previously configured SRS transmissions for a reference UE, and the configuration of SRS transmissions from multiple UE transmitter antennas.
Owner:SAMSUNG ELECTRONICS CO LTD

Propagation delay difference reporting for multiple component carriers

The invention relates to methods for reporting on downlink timings by a mobile terminal in a mobile communication system. In order to allow for an aggregation access point to obtain information on propagation delay differences of downlink transmissions on aggregated serving cells, the invention suggests the mobile terminal to report timing information based on reception time difference information for a the target / reference cell. The mobile terminal performs measurements relating to transmission and / or reception time differences on the target / reference cell, and reports same to the eNodeB. The eNodeB compares the measurement result to a predefined maximum propagation delay time difference. Alternatively, the mobile terminal performs the measurements, compares same to the predefined maximum propagation delay time difference and then report the comparison result to the eNodeB.
Owner:PANASONIC INTELLECTUAL PROPERTY CORP OF AMERICA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products