Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

40629 results about "Carrier signal" patented technology

In telecommunications, a carrier wave, carrier signal, or just carrier, is a waveform (usually sinusoidal) that is modulated (modified) with an input signal for the purpose of conveying information. This carrier wave usually has a much higher frequency than the input signal does. The purpose of the carrier is usually either to transmit the information through space as an electromagnetic wave (as in radio communication), or to allow several carriers at different frequencies to share a common physical transmission medium by frequency division multiplexing (as in a cable television system, for example). The term originated in radio communication, where the carrier wave is the radio wave which carries the information (modulation) through the air from the transmitter to the receiver. The term is also used for an unmodulated emission in the absence of any modulating signal.

Multicarrier Sub-Layer for Direct Sequence Channel and Multiple-Access Coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and/or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Radio communication system

There is disclosed a radio communication system in which a constitution of a base station and further a control station can be simplified. A radio communication system according to the present invention converts a received signal received by a plurality of antenna elements in a base station to a signal of different frequency band, and then conflates the converted signal in order to generate sub-carrier wave multiplex signal. The signal is converted to an optical signal, and then the optical signal is transmitted to a control station via an optical fiber. Or the control station performs weighting to phase of the transmitted signal transmitted from a plurality of antennas of a base station, and then performs frequency conversion to different frequency band, and then conflates the converted signal in order to generate the sub-carrier wave multiplex signal. The signal is converted to an optical signal, and then an optical signal is transmitted to the base station side via the optical fiber. The control station and the base station divides the received sub-carrier wave multiplex signal by each frequency band, and then the frequency of the divided signals are converted to the same frequency band in order to generate the transmitted / received signal of each antenna element. By such a constitution, it is possible to reduce constituent of the optical transmission components to the minimum and to simplify the constitution of the base station. Furthermore, it is possible to maintain the relative phase difference and the relative intensity of the transmitted / received signal of each antenna element. Because of this, it is possible to estimate an arrival direction of the received signal and to control radiation beam pattern of the transmitted signal.
Owner:KK TOSHIBA

High efficiency high performance communications system employing multi-carrier modulation

Transmitter and receiver units for use in a communications system and configurable to provide antenna, frequency, or temporal diversity, or a combination thereof, for transmitted signals. The transmitter unit includes a system data processor, one or more modulators, and one or more antennas. The system data processor receives and partitions an input data stream into a number of channel data streams and further processes the channel data streams to generate one or more modulation symbol vector streams. Each modulation symbol vector stream includes a sequence of modulation symbol vectors representative of data in one or more channel data streams. Each modulator receives and modulates a respective modulation symbol vector stream to provide an RF modulated signal, and each antenna receives and transmits a respective RF modulated signal. Each modulator may include an inverse (fast) Fourier transform (IFFT) and a cyclic prefix generator. The IFFT generates time-domain representations of the modulation symbol vectors, and the cyclic prefix generator repeats a portion of the time-domain representation of each modulation symbol vector. The channel data streams are modulated using multi-carrier modulation, e.g., OFDM modulation. Time division multiplexing (TDM) may also be used to increase flexibility.
Owner:QUALCOMM INC

Multicarrier sub-layer for direct sequence channel and multiple-access coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and / or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Power supply system

A power supply system according to the present invention comprises: a primary side coil; a power transmission apparatus having a primary side circuit for feeding a pulse voltage resulted from switching a DC voltage which is obtained by rectifying and smoothing a commercial power supply to the primary side coil; a secondary side coil magnetically coupled to the primary side coil; and power reception equipment having a secondary side circuit for rectifying and smoothing voltage induced across the secondary side coil, wherein there is provided a power adjusting section for adjusting a level of power to be transmitted according to power required by the power reception equipment. The power adjusting section has, in the primary side circuit, a carrier wave oscillation circuit for supplying a carrier wave to the primary side coil, a demodulation circuit for demodulating a modulated signal transmitted from the secondary circuit and received by the primary side coil, and a power change-over section for selecting a level of power to be transmitted according to an information signal from the power reception equipment and demodulated by the demodulation circuit. The power adjusting section has, in the secondary side circuit, a modulation circuit for modulating the carrier wave fed from the carrier wave oscillation circuit and received by the secondary side coil with the information signal from the power reception equipment and transmitting the modulated signal.
Owner:SHARP KK

On-demand data system

Disclosed is a system for allowing on-demand delivery of data, such as MPEG-2 compressed video data, to a subscriber from a content server. The system utilizes a managed IP network that is coupled to the one or more content servers that allows the content servers to deliver data such as video, audio, and textual data with a guaranteed quality of service that is at least as good as broadcast quality service. The managed IP network is connected to a head end or other local cable service provider where video is delivered locally to subscribers. The IP transport data is translated to MPEG transport data, multiplexed onto an MPEG transport system, digitally modulated onto an rf carrier and up-converted to a specific frequency channel. The signal is then applied to the cable for delivery to the subscriber. Upstream signaling occurs through a set top box or computer that is connected to the cable and subsequently to a digital modulator/demodulator and ISP to a managed IP network 66. Low band signals can also be transmitted from the content servers back to the set top box or computer indicating confirmation of an order. Also, control signals such as stop, rewind, fast-forward, and slow can be transmitted back to the content server to control the transmission of data from the content server to the subscriber.
Owner:CABLE TELEVISION LAB
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products