Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2912 results about "Pulse voltage" patented technology

The pulse voltage capability ranges from 1 KV for low resistance values in the 1/4-Watt size up to 10 KV for higher resistance values in the mini 1/2-W and 1-W sizes. The output pulse voltage is equivalent to input (4.

Power supply system

A power supply system according to the present invention comprises: a primary side coil; a power transmission apparatus having a primary side circuit for feeding a pulse voltage resulted from switching a DC voltage which is obtained by rectifying and smoothing a commercial power supply to the primary side coil; a secondary side coil magnetically coupled to the primary side coil; and power reception equipment having a secondary side circuit for rectifying and smoothing voltage induced across the secondary side coil, wherein there is provided a power adjusting section for adjusting a level of power to be transmitted according to power required by the power reception equipment. The power adjusting section has, in the primary side circuit, a carrier wave oscillation circuit for supplying a carrier wave to the primary side coil, a demodulation circuit for demodulating a modulated signal transmitted from the secondary circuit and received by the primary side coil, and a power change-over section for selecting a level of power to be transmitted according to an information signal from the power reception equipment and demodulated by the demodulation circuit. The power adjusting section has, in the secondary side circuit, a modulation circuit for modulating the carrier wave fed from the carrier wave oscillation circuit and received by the secondary side coil with the information signal from the power reception equipment and transmitting the modulated signal.
Owner:SHARP KK

Power supply system

A power supply system is provided, having: a primary side coil; a power transmission apparatus having a primary side circuit for feeding a pulse voltage resulted from switching a DC voltage which is obtained by rectifying and smoothing a commercial power supply to the primary side coil; a secondary side coil magnetically coupled to the primary side coil; and power reception equipment having a secondary side circuit for rectifying and smoothing voltage induced across the secondary side coil, wherein there is provided a power adjusting section for adjusting a level of power to be transmitted according to power required by the power reception equipment. The power adjusting section has, in the primary side circuit, a carrier wave oscillation circuit for supplying a carrier wave to the primary side coil, a demodulation circuit for demodulating a modulated signal transmitted from the secondary circuit and received by the primary side coil, and a power change-over section for selecting a level of power to be transmitted according to an information signal from the power reception equipment and demodulated by the demodulation circuit. The power adjusting section has, in the secondary side circuit, a modulation circuit for modulating the carrier wave fed from the carrier wave oscillation circuit and received by the secondary side coil with the information signal from the power reception equipment and transmitting the modulated signal.
Owner:SHARP KK

Battery charger for lithium based batteries

A method for charging a battery, such as a lithium based battery, which applies different charge pulses and discharge pulses to the battery, takes voltage measurements during those charge pulses, discharge pulses, and rest periods between the charge pulses and discharge pulses, and determines whether to terminate or to continue charging the battery. The full sequence of charge pulses, discharge pulses, and rest periods, includes a plurality of charge pulses (1), separated by rest periods (2) and followed by a rest period (3). This is then followed by a plurality of discharge pulses (4), separated by rest periods (5) and followed by a rest period (6). This is then followed by a plurality of extended charge pulses (7), separated by rest periods (8) and followed by a rest period (9). Then another discharge pulse (10) is applied, followed by a rest period (11). This is followed by a plurality of alternating charge pulses (13) and discharge pulses (12), separated by rest periods (13, 15) and followed by a rest period (16). Then another plurality of discharge pulses (17) is applied, separated by rest periods (18) and followed by a rest period (19). Open circuit voltage measurements taken during the rest periods, loaded circuit voltage measurements taken during the discharge pulses, and charge pulse voltage measurements taken during the charge pulses, are used to determine whether to continue or to terminate the charging of the battery.
Owner:ENREV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products