Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

11024 results about "Secondary side" patented technology

Power supply system

A power supply system according to the present invention comprises: a primary side coil; a power transmission apparatus having a primary side circuit for feeding a pulse voltage resulted from switching a DC voltage which is obtained by rectifying and smoothing a commercial power supply to the primary side coil; a secondary side coil magnetically coupled to the primary side coil; and power reception equipment having a secondary side circuit for rectifying and smoothing voltage induced across the secondary side coil, wherein there is provided a power adjusting section for adjusting a level of power to be transmitted according to power required by the power reception equipment. The power adjusting section has, in the primary side circuit, a carrier wave oscillation circuit for supplying a carrier wave to the primary side coil, a demodulation circuit for demodulating a modulated signal transmitted from the secondary circuit and received by the primary side coil, and a power change-over section for selecting a level of power to be transmitted according to an information signal from the power reception equipment and demodulated by the demodulation circuit. The power adjusting section has, in the secondary side circuit, a modulation circuit for modulating the carrier wave fed from the carrier wave oscillation circuit and received by the secondary side coil with the information signal from the power reception equipment and transmitting the modulated signal.
Owner:SHARP KK

Power supply system

A power supply system is provided, having: a primary side coil; a power transmission apparatus having a primary side circuit for feeding a pulse voltage resulted from switching a DC voltage which is obtained by rectifying and smoothing a commercial power supply to the primary side coil; a secondary side coil magnetically coupled to the primary side coil; and power reception equipment having a secondary side circuit for rectifying and smoothing voltage induced across the secondary side coil, wherein there is provided a power adjusting section for adjusting a level of power to be transmitted according to power required by the power reception equipment. The power adjusting section has, in the primary side circuit, a carrier wave oscillation circuit for supplying a carrier wave to the primary side coil, a demodulation circuit for demodulating a modulated signal transmitted from the secondary circuit and received by the primary side coil, and a power change-over section for selecting a level of power to be transmitted according to an information signal from the power reception equipment and demodulated by the demodulation circuit. The power adjusting section has, in the secondary side circuit, a modulation circuit for modulating the carrier wave fed from the carrier wave oscillation circuit and received by the secondary side coil with the information signal from the power reception equipment and transmitting the modulated signal.
Owner:SHARP KK

Input parasitic metal detection

A system and method of controlling inductive power transfer in an inductive power transfer system and a method for designing an inductive power transfer system with power accounting. The method of controlling inductive power transfer including measuring a characteristic of input power, a characteristic of power in the tank circuit, and receiving information from a secondary device. Estimating power consumption based on the measured characteristic of tank circuit power and received information and comparing the measured characteristic of input power, the information from the secondary device, and the estimated power consumption to determine there is an unacceptable power loss. The method for designing an inductive power transfer system with power accounting including changing the distance between a primary side and a secondary side and changing a load of the secondary side. For each distance between the primary side and the secondary side and for each load, measuring a circuit parameter on the primary side in the tank circuit and a circuit parameter on the secondary side during the transfer of contactless energy. The method further including selecting a formula to describe power consumption in the system during the transfer of contactless energy based on coefficients and the circuit parameters, and determining the coefficients using the measured circuit parameters.
Owner:PHILIPS IP VENTURES BV

Non-effective earthing distribution system fault locating method based on neutral point of transient traveling wave

InactiveCN101232176ASolve hard-to-reach puzzlesFix speed inconsistenciesEmergency protective circuit arrangementsFault locationTransient stateDistribution transformer
The invention discloses a method for locating fault of power distribution system with ineffectively grounded neutral point based on transient traveling wave, which can acquire required traveling wave signals and relatively higher detection reliability by arranging equipment only on both sides of circuit. According to the actual site condition, a non-contact electromagnetic field sensor is arranged in a transformer substation to acquire transient voltage and current traveling wave, a power distribution transformer arranged on the tail end of the circuit transmits voltage-variable traveling wave to solve the problem in acquisition of tail-end voltage traveling wave signals, and the type of the fault of the circuit can be rapidly recognized according to the amplitude and the polarity characteristics of a fault traveling wave recorded by the secondary side of the transformer. The invention provides a new fault search algorithm based on the midpoint of time to solve the problem of noncontinuous wave speed of aerial wire and cable. Accordingly, the proposal can achieve the assembly and the operation of the equipment without adding extra primary equipment of the system and powering off the circuit, thus saving the cost and reducing the complex degree of the project. Practical operation shows that the method can locate a fault within a range of plus or minus 100 m.
Owner:WEIFANG UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products