Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

2265 results about "Integrator" patented technology

An integrator in measurement and control applications is an element whose output signal is the time integral of its input signal. It accumulates the input quantity over a defined time to produce a representative output.

Virtual intelligence shoe with a podiatric analysis system

The virtual intelligence shoe with a podiatric analysis system provided with a portable pair of shoe-like body types thereof, into two of which a miniature electronic module and an enclosed sensor mat are permanently embedded in the shoe-like with a mechanical air package enclosing the electronic module to serve as a shock absorption. A miniature electronic module comprises a transmitting circuit with pressure resistance, shoe temperature and warning buzzer for full memory capacity, which receives the variable pressure and temperature voltage signals, convert them into resistance (ohm) and Celsius, respectively. The electrical signals can be emitted in an infrared light signal. An enclosed sensor mat constitutes a thin, flexible, planar, resilient, and dielectric material that arrays seventy-four positions at strategic geometrical pattern to produce the precision of collecting data exerted by a foot or feet continuously and instantaneously in static and dynamic event during the full weight bearing in various activities. The conjunction of a pair of shoe-like body types, a digital foot scanner, a portable infrared light-receiving unit and a central integrator (servers) form a podiatric analysis system for enabling accurate information. An obtained information of each individual can be stored and analyzed for diagnostic means with respect to the foot or feet maladies. The virtual intelligence shoe with a podiatric analysis system is an unconventional, which can ultimately be used by anyone and capable to produce consistent foot or feet information to implement the changes in the foot or feet biomechanics by altering the shoes, orthoses or other modes. In a preferred form, a pair of shoe-like body types is virtually applied to any type of foot or feet maladies and worn daily as if they were conventional shoes under various terrain conditions.

Integration of legacy database management systems with ODBC-compliant application programs

A database integrator is provided to an application program that utilizes the ODBC interface so as to enable the application program to access the data in a legacy DBMS. The application program ("the client program") is located on a workstation, and the legacy DBMS is located on a host computer. The legacy DBMS is used primarily by an application program ("the server program"). The database integrator receives ODBC commands from the client program, and unlike database drivers interacting with non-legacy DBMSs that send SQL statements to the DBMS, the database integrator instead converts these commands into server program-specific commands to manipulate the user interface of the server program, establishes a connection with the server program over a terminal emulation session, and issues the server program-specific commands to the server program by using the terminal emulator. These server program-specific commands manipulate the server program's user interface to display the appropriate data so that the database integrator can then access it. In this manner, the database integrator accesses the data in the legacy DBMS indirectly by issuing user interface commands to the server program, because the database integrator cannot typically access the legacy DBMS directly. This indirect access enables the client program to gain access to the data in a database that it would not otherwise be able to access.

System and methods for autonomous tracking and surveillance

A system and methods for autonomously tracking and simultaneously providing surveillance of a target from air vehicles. In one embodiment the system receives inputs from outside sources, creates tracks, identifies the targets and generates flight plans for unmanned air vehicles (UAVs) and camera controls for surveillance of the targets. The system uses predictive algorithms and aircraft control laws. The system comprises a plurality of modules configured to accomplish these tasks. One embodiment comprises an automatic target recognition (ATR) module configured to receive video information, process the video information, and produce ATR information including target information. The embodiment further comprises a multi-sensor integrator (MSI) module configured to receive the ATR information, an air vehicle state input and a target state input, process the inputs and produce track information for the target. The embodiment further comprises a target module configured to receive the track information, process the track information, and produce predicted future state target information. The embodiment further comprises an ownship module configured to receive the track information, process the track information, and produce predicted future state air vehicle information. The embodiment further comprises a planner module configured to receive the predicted future state target information and the predicted future state air vehicle information and generate travel path information including flight and camera steering commands for the air vehicle.

Battery capacity measuring and remaining capacity calculating system

A battery capacity measuring device in accordance with the present invention has a fully-charged state detector (80e), a detected current integrator (80a), a divider (80b), and a corrector (80c) incorporated in a microcomputer (80). The fully-charged state detector detects that a battery is fully charged. The detected current integrator integrates current values that are detected by a current sensor during a period from the instant the battery is fully charged to the instant it is fully charged next. The divider divides the integrated value of detected current values by the length of the period. The corrector corrects a detected current using the quotient provided by the divider as an offset. Furthermore, a remaining battery capacity calculating system comprises a voltage detecting unit (50), a current detecting unit (40), an index calculating unit, a control unit, and a calculating unit. The voltage detecting unit detects the voltage at the terminals of a battery. The current detecting unit detects a current flowing through the battery. The index calculating unit calculates the index of polarization in the battery according to the detected current. The control unit controls the output voltage of an alternator so that the index of polarization will remain within a predetermined range which permits limitation of the effect of polarization on the charged state of the battery. When the index of polarization remains within the predetermined range, the calculating unit calculates the remaining capacity of the battery according to the terminal voltage of the battery, that is, the open-circuit voltage of the battery.

Signal detector employing a Doppler phase correction system

A spread spectrum detector employs a Doppler phase correction system that improves correlation of pseudo-noise (PN) codes to a received spread spectrum signal by combining phase shifts, in the time domain, to correlation values that compensate for the Doppler shift error that is inherent in the signal and that is imposed upon the signal by movement between the signal source and receiver. In architecture, the Doppler phase correction system includes a receiver to receive a spread spectrum modulated signal having the Doppler shift error, a multiplier to produce a plurality of complex first correlation values based upon the signal and a code. A phase shifter generates a plurality of complex second correlation values respectively from the first correlation values. The second correlation values being phase shifted by respective different amounts from corresponding first correlation values, so that the second correlation values exhibit less of the Doppler shift error than the first correlation values. The phase shifter can be implemented with a look-up table that stores a plurality of phase shift values, a counter that produces indices for the look-up table, and a multiplier that multiplies the phase shift values that are output from the look-up table with the first correlation values to produce the second correlation values. Finally, a combiner, such as an integrator, combines, or integrates, the second correlation values to derive a third correlation that indicates a degree of correspondence of the code with the signal.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products