Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1430 results about "Oxygen saturation" patented technology

Oxygen saturation (symbol SO₂) is a relative measure of the concentration of oxygen that is dissolved or carried in a given medium as a proportion of the maximal concentration that can be dissolved in that medium. It can be measured with a dissolved oxygen probe such as an oxygen sensor or an optode in liquid media, usually water. The standard unit of oxygen saturation is percent (%).

Method and apparatus for non-invasive blood constituent monitoring

A system for determining a biologic constituent including hematocrit transcutaneously, noninvasively and continuously. A finger clip assembly includes including at least a pair of emitters and a photodiode in appropriate alignment to enable operation in either a transmissive mode or a reflectance mode. At least one predetermined wavelength of light is passed onto or through body tissues such as a finger, earlobe, or scalp, etc. and attenuation of light at that wavelength is detected. Likewise, the change in blood flow is determined by various techniques including optical, pressure, piezo and strain gage methods. Mathematical manipulation of the detected values compensates for the effects of body tissue and fluid and determines the hematocrit value. If an additional wavelength of light is used which attenuates light substantially differently by oxyhemoglobin and reduced hemoglobin, then the blood oxygen saturation value, independent of hematocrit may be determined. Further, if an additional wavelength of light is used which greatly attenuates light due to bilirubin (440 nm) or glucose (1060 nm), then the bilirubin or glucose value may also be determined. Also how to determine the hematocrit with a two step DC analysis technique is provided. Then a pulse wave is not required, so this method may be utilized in states of low blood pressure or low blood flow.
Owner:HEMA METRICS

Wireless Health Monitor Device and System with Cognition

A home-based remote care solution provides sensors including a basic health monitor (BHM) that is a measurement and feedback system. The BHM operates with low power integrated communications combined with an in-home, low power mesh network or programmable digital assistant (PDA) with cell phone technology. A cognitive system allows remote monitoring of the location and the basic health of an individual. The BHM measures oxygen saturation (SaO2), temperature of the ear canal, and motion, including detection of a fall and location within a facility. Optionally, the BHM measures CO2, respiration, EKG, EEG, and blood glucose. No intervention is required to determine the status of the individual and to convey this information to care providers. The cognitive system provides feedback and assistance to the individual while learning standard behavior patterns. An integrated audio speaker and microphone enable the BHM to deliver audio alerts, current measurements, and voice prompts. A remote care provider can deliver reminders via the BHM. The device may be worn overnight to allow monitoring and intervention. Through the ability to inquire, the cognitive system is able to qualify events such as loss of unconsciousness or falls. Simple voice commands activate the device to report its measurements and to give alerts to care providers. Alerts from care providers can be in a familiar voice to assist with compliance to medication regimens and disease management instructions. Simple switches allow volume control and manual activation. The device communicates with a series of low-power gateways to an in-home cognitive server and point-of-care (POC) appliance (computer). Alone the BHM provides basic feedback and monitoring with limited cognitive capabilities such as low oxygen or fall detection. While connected to the cognitive server, full cognitive capabilities are attained. Full alerting capability requires the cognitive server to be connected through an Internet gateway to the remote care provider.
Owner:WOLF JAMES L +3

Method for spectrophotometric blood oxygenation monitoring

A method and apparatus for non-invasively determining the blood oxygen saturation level within a subject's tissue is provided that utilizes a near infrared spectrophotometric (NIRS) sensor capable of transmitting a light signal into the tissue of a subject and sensing the light signal once it has passed through the tissue via transmittance or reflectance. The method includes the steps of: (1) transmitting a light signal into the subject's tissue, wherein the transmitted light signal includes a first wavelength, a second wavelength, and a third wavelength; (2) sensing a first intensity and a second intensity of the light signal, along the first, second, and third wavelengths after the light signal travels through the subject at a first and second predetermined distance; (3) determining an attenuation of the light signal for each of the first, second, and third wavelengths using the sensed first intensity and sensed second intensity of the first, second, and third wavelengths; (4) determining a difference in attenuation of the light signal between the first wavelength and the second wavelength, and between the first wavelength and the third wavelength; and (5) determining the blood oxygen saturation level within the subject's tissue using the difference in attenuation between the first wavelength and the second wavelength, and the difference in attenuation between the first wavelength and the third wavelength.
Owner:EDWARDS LIFESCIENCES CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products