Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

724 results about "Motion artifacts" patented technology

Motion artifact is a patient-based artifact that occurs with voluntary or involuntary patient movement during image acquisition.

Washable wearable biosensor

A washable, wearable biosensor that can gather sensor data, communicate the sensed data by wireless protocols, and permits the analysis of sensed data in real-time as a person goes about their normal lifestyle activities. The biosensor can be worn in multiple positions, can be put on or removed quickly without having to apply or remove gels and adhesives, and provides a snug, comfortable fit to gather data with minimal motion artifacts. The textile, wearable device can support integrated photoplethysmography, skin conductance, motion, and temperature sensors in a small wearable package. The supported sensors may be coupled to utilization devices by channel-sharing wireless protocols to enable the transmission of data from multiple users and multiple sensors (e.g. both sides of body, wrists or hands and feet, or multiple people). An on-board processor, or the receiving utilization device, can map patterns of the physiological and motion data to signals or alerts such as a likely seizure, drug craving, or other states that the wearer may exhibit or experience. The sensor data may be sent by wireless transmission and received by a mobile phone or other personal digital device, a computer, a favorite toy, or another wearable device. The sensors may include multiple photoplethysmographs and / or one or more EDAs which perform a time-domain measurement of skin conductance
Owner:MASSACHUSETTS INST OF TECH

Separating motion from cardiac signals using second order derivative of the photo-plethysmogram and fast fourier transforms

The present invention is directed toward a pulse oximetry system for the determination of a physiological parameter capable of removing motion artifacts from physiological signals comprises a hardware subsystem and a software subsystem. The software subsystem is used in conjunction with the hardware subsystem to perform a method for removing a plurality of motion artifacts from the photo-plethysmographic data and for obtaining a measure of at least one physiological parameter from the data. The method comprises acquiring the raw photo-plethysmographic data, transforming the data into the frequency domain, analyzing the transformed data to locate a series of candidate cardiac spectral peaks (primary plus harmonics), reconstructing a photo-plethysmographic signal in the time domain with only the candidate cardiac spectral peaks (primary plus harmonics), computing the second order derivative of the reconstructed photo-plethysmographic signal, analyzing the candidate second order derivative photo-plethysmographic signal to determine the absence or presence of cardiac physiologic signal characteristics, and finally selecting the best physiologic candidate from the series of potential cardiac spectral peaks (primary plus harmonics) based upon a second derivative scoring system. This scoring system is preferentially based upon second derivative processing analysis, but can be equally applied using the first, third, fourth or other similar derivative processing analysis.
Owner:SPACELABS HEALTHCARE LLC

Washable wearable biosensor

A washable, wearable biosensor that can gather sensor data, communicate the sensed data by wireless protocols, and permits the analysis of sensed data in real-time as a person goes about their normal lifestyle activities. The biosensor can be worn in multiple positions, can be put on or removed quickly without having to apply or remove gels and adhesives, and provides a snug, comfortable fit to gather data with minimal motion artifacts. The textile, wearable device can support integrated photoplethysmography, skin conductance, motion, and temperature sensors in a small wearable package. The supported sensors may be coupled to utilization devices by channel-sharing wireless protocols to enable the transmission of data from multiple users and multiple sensors (e.g. both sides of body, wrists or hands and feet, or multiple people). An on-board processor, or the receiving utilization device, can map patterns of the physiological and motion data to signals or alerts such as a likely seizure, drug craving, or other states that the wearer may exhibit or experience. The sensor data may be sent by wireless transmission and received by a mobile phone or other personal digital device, a computer, a favorite toy, or another wearable device. The sensors may include multiple photoplethysmographs and / or one or more EDAs which perform a time-domain measurement of skin conductance.
Owner:MASSACHUSETTS INST OF TECH

Method, apparatus and system for removing motion artifacts from measurements of bodily parameters

A method for removing motion artifacts from devices for sensing bodily parameters and apparatus and system for effecting same. The method includes analyzing segments of measured data representing bodily parameters and possibly noise from motion artifacts. Each segment of measured data may correspond to a single light signal transmitted and detected after transmission or reflection through bodily tissue. Each data segment is frequency analyzed to determine up to three candidate peaks for further analysis. Each of the up to three candidate frequencies may be filtered and various parameters associated with each of the up to three candidate frequencies are calculated. The best frequency, if one exists, is determined by arbitrating the candidate frequencies using the calculated parameters according to predefined criteria. If a best frequency is found, a pulse rate and SPO2 may be output. If a best frequency is not found, other, conventional techniques for calculating pulse rate and SpO2 may be used. The above method may be applied to red and infrared pulse oximetry signals prior to calculating pulse rate and/or pulsatile blood oxygen concentration. Apparatus and systems disclosed are configured to perform methods disclosed according to the invention.
Owner:PHILIPS ELECTRONICS NORTH AMERICA +1

Separating motion from cardiac signals using second order derivative of the photo-plethysmogram and fast fourier transforms

The present invention is directed toward a pulse oximetry system for the determination of a physiological parameter capable of removing motion artifacts from physiological signals comprises a hardware subsystem and a software subsystem. The software subsystem is used in conjunction with the hardware subsystem to perform a method for removing a plurality of motion artifacts from the photo-plethysmographic data and for obtaining a measure of at least one physiological parameter from the data. The method comprises acquiring the raw photo-plethysmographic data, transforming the data into the frequency domain, analyzing the transformed data to locate a series of candidate cardiac spectral peaks (primary plus harmonics), reconstructing a photo-plethysmographic signal in the time domain with only the candidate cardiac spectral peaks (primary plus harmonics), computing the second order derivative of the reconstructed photo-plethysmographic signal, analyzing the candidate second order derivative photo-plethysmographic signal to determine the absence or presence of cardiac physiologic signal characteristics, and finally selecting the best physiologic candidate from the series of potential cardiac spectral peaks (primary plus harmonics) based upon a second derivative scoring system. This scoring system is preferentially based upon second derivative processing analysis, but can be equally applied using the first, third, fourth or other similar derivative processing analysis.
Owner:SPACELABS HEALTHCARE LLC

Method, apparatus and system for removing motion artifacts from measurements of bodily parameters

A method for removing motion artifacts from devices for sensing bodily parameters and apparatus and system for effecting same. The method includes analyzing segments of measured data representing bodily parameters and possibly noise from motion artifacts. Each segment of measured data may correspond to a single light signal transmitted and detected after transmission or reflection through bodily tissue. Each data segment is frequency analyzed to determine up to three candidate peaks for further analysis. Each of the up to three candidate frequencies may be filtered and various parameters associated with each of the up to three candidate frequencies are calculated. The best frequency, if one exists, is determined by arbitrating the candidate frequencies using the calculated parameters according to predefined criteria. If a best frequency is found, a pulse rate and SPO2 may be output. If a best frequency is not found, other, conventional techniques for calculating pulse rate and SpO2 may be used. The above method may be applied to red and infrared pulse oximetry signals prior to calculating pulse rate and / or pulsatile blood oxygen concentration. Apparatus and systems disclosed are configured to perform methods disclosed according to the invention.
Owner:PHILIPS ELECTRONICS NORTH AMERICA +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products