Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

45623 results about "Blood vessel" patented technology

The blood vessels are the components of the circulatory system that transport blood throughout the human body. These vessels transport blood cells, nutrients, and oxygen to the tissues of the body. They also take waste and carbon dioxide away from the tissues. Blood vessels are needed to sustain life, because all of the body’s tissues rely on their functionality.

Methods and apparatus for cardiac valve repair

The methods, devices, and systems are provided for performing endovascular repair of atrioventricular and other cardiac valves in the heart. Regurgitation of an atrioventricular valve, particularly a mitral valve, can be repaired by modifying a tissue structure selected from the valve leaflets, the valve annulus, the valve chordae, and the papillary muscles. These structures may be modified by suturing, stapling, snaring, or shortening, using interventional tools which are introduced to a heart chamber. Preferably, the tissue structures will be temporarily modified prior to permanent modification. For example, opposed valve leaflets may be temporarily grasped and held into position prior to permanent attachment.
Owner:EVALVE

Anastomosis instrument and method for performing same

A surgical instrument for anastomosis of first and second blood vessels includes a housing having distal and proximal ends and an actuator disposed therebetween. The actuator includes a handle and a link assembly, the link assembly being movable through a firing stroke in response to movement of the handle. The instrument also includes a disposable loading unit releasably attached to the distal end of the housing in mechanical cooperation with the actuator. The disposable loading unit supports a plurality of surgical fasteners, which deform upon movement of the actuator and the link assembly through the firing stroke.
Owner:TYCO HEALTHCARE GRP LP

Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve

A device, kit and method may include or employ an implantable device (e.g., annuloplasty implant) and a tool operable to implant such. The implantable device is positionable in a cavity of a bodily organ (e.g., a heart) and operable to constrict a bodily orifice (e.g., a mitral valve). The tissue anchors may be guided into precise position by an intravascularly or percutaneously deployed anchor guide frame of the tool and embedded in an annulus of the orifice. Constriction of the orifice may be accomplished via a variety of structures, for example by cinching a flexible cable or via a anchored annuloplasty ring, the cable or ring attached to the tissue anchors. The annuloplasty ring may be delivered in an unanchored, generally elongated configuration, and implanted in an anchored generally arch, arcuate or annular configuration. Such may approximate the septal and lateral (clinically referred to as anterior and posterior) annulus of the mitral valve, to move the posterior leaflet anteriorly and the anterior leaflet posteriorly, thereby improving leaflet coaptation to eliminate mitral regurgitation.
Owner:KARDIUM

Biointerface membranes incorporating bioactive agents

A biointerface membrane for an implantable device including a nonresorbable solid portion with a plurality of interconnected cavities therein adapted to support tissue ingrowth in vivo, and a bioactive agent incorporated into the biointerface membrane and adapted to modify the tissue response is provided. The bioactive agents can be chosen to induce vascularization and / or prevent barrier cell layer formation in vivo, and are advantageous when used with implantable devices wherein solutes are transported across the device-tissue interface.
Owner:DEXCOM

Vascular closure device

A method of accessing a blood vessel, comprising: forming a hole in the blood vessel; mounting a hole closure device onto the blood vessel; accessing the blood vessel through the hole, while the hole closure device is mounted on the blood vessel; and closing the hole by the hole closure device, after accessing the blood vessel through the hole.
Owner:BY PASS

Electroactive polymer actuated medical devices

The present invention is directed to novel apparatus for use in medical procedures relating to tubular body fluid conduits. According to a first aspect of the invention, a filter apparatus is provided for delivery over a guidewire within a tubular body conduit, such as a blood vessel. The filter apparatus comprises: (a) a filter element transformable between a collapsed state and a deployed state, wherein the filter element is adapted to filter particulate matter from fluid within the tubular body conduit while in the deployed state; and (b) a locking member comprising one or more electroactive polymer actuators which switch the locking member between (i) a locking state wherein the locking member securely engages the guidewire and (ii) a release state wherein the locking member is movable along the length of the guidewire. According to a second aspect of the invention, a connector apparatus is provided for use in making an anastomotic connection between first and second tubular fluid conduits in a patient. The connector apparatus comprises: (a) a locking member, which further comprises one or more electroactive polymer actuators that switch the locking member between a locking state and a release state; and (b) a connector body that is configured to permit flow of bodily fluid between the first and second tubular fluid conduits. The connector body has a first portion configured for insertion into an axial end of the first tubular fluid conduit and a second portion configured for insertion through a sidewall of the second tubular fluid conduit. The second portion of the connector body is further configured to securely engage the locking member when the locking member is in the locking state.
Owner:BOSTON SCI SCIMED INC

Surgical staple-clip and applier

InactiveUS20060100649A1Constrict or occludeNourishment to the body tissue is maintainedStaplesNailsSurgical stapleSurgical site
A surgical staple-clip including a clip component and a securing member is used in a wide range of surgical procedures. The staple-clip may be introduced to a surgical site in an un-assembled condition through a small port or trocar. An applier for the staple-clip comprising a pair of opposed jaw-like channels is provided to position and apply the clip component and the securing member. The clip component is positioned around a target tissue and is compressed or clamped upon the tissue using only the force required for a specific surgical procedure such as occlusion, ligation or fixation. When the clip component is properly applied, the securing member is urged forward and over the clip component to secure the staple-clip. The clip component may include traction enhancement features such as surface interruptions, bumps, valleys and ridges. With the staple-clip of the invention, the force required to constrict or occlude the tissue is separate from the force required to secure and maintain the staple-clip in position and, as a result, the body tissue is not over-compressed and nourishment to the body tissue is maintained. Other aspects of the invention include thumb actuated clip appliers for use in hand assisted laparoscopy (HAL). In one embodiment, a clip applier includes a handle and a thumb actuated mechanism that is used to slidably release clips onto a body tissue or vessel by sliding the thumb actuated mechanism forward and backward using only one hand. In another aspect of the invention, a two-stage clip is disclosed having a clip component and a staple component for securing the clip after it has been properly positioned.
Owner:APPL MEDICAL RESOURCES CORP

Tear and abrasion resistant expanded material and reinforcement

InactiveUS20070207186A1Increase flexibilityLess complex manufacturing processStentsSurgeryDiseaseEngineering
The present invention is a more durable expanded material that enables thinner wall thicknesses and a more flexible reinforcement suitable for stenting. The present invention is especially useful in the construction of grafts, stents, and stent-grafts which are used, for example, in repairing or replacing blood vessels that are narrowed or occluded by disease, aneurismal blood vessels, or other medical treatments. The inventive material and configurations allow expansion or contraction in size or adjustment in size in an incremental manner so that the optimum size, shape, and fit with other objects can be obtained. The present invention is also optionally capable of more accurately delivering one or more active ingredients such as drugs over longer periods of time. The present invention optionally includes surface modifications and additives that increase the surface adhesion of active ingredients, coatings, or combinations thereof. Finally, the present invention optionally includes growing cells on the inventive material so that the expanded material, reinforcement, or combinations thereof are useful, for example, in producing lab-grown blood vessels or organs.
Owner:SCANLON JOHN JAMES +1

Apparatus for performing anastomosis

An apparatus for performing anastomosis between a graft vessel and a target vessel may include a connector holder having spaced-apart arms, and a member connected to the connector holder, where the member is insertable through an opening in a wall of the target vessel at least partially into the lumen of the target vessel. One or more connectors, such as staples, may be deployed from each arm to connect the graft vessel to the target vessel. One or more connectors may be deformable against the member.
Owner:AESCULAP AG

Delivery devices

Self-expandable, woven intravascular devices for use as stents (both straight and tapered), filters (both temporary and permanent) and occluders for insertion and implantation into a variety of anatomical structures. The devices may be formed from shape memory metals such as nitinol. The devices may also be formed from biodegradable materials. Delivery systems for the devices include two hollow tubes that operate coaxially. A device is secured to the tubes prior to the implantation and delivery of the device by securing one end of the device to the outside of the inner tube and by securing the other end of the device to the outside of the outer tube. The stents may be partially or completely covered by graft materials, but may also be bare. The devices may be formed from a single wire. The devices may be formed by either hand or machine weaving. The devices may be created by bending shape memory wires around tabs projecting from a template, and weaving the ends of the wires to create the body of the device such that the wires cross each other to form a plurality of angles, at least one of the angles being obtuse. The value of the obtuse angle may be increased by axially compressing the body.
Owner:HYODOH HIDEKI +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products