Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

3809 results about "Guide wires" patented technology

Minimally invasive apparatus for implanting a sacral stimulation lead

Methods and apparatus for implanting a stimulation lead in a patient's sacrum to deliver neurostimulation therapy that can reduce patient surgical complications, reduce patient recovery time, and reduce healthcare costs. A surgical instrumentation kit for minimally invasive implantation of a sacral stimulation lead through a foramen of the sacrum in a patient to electrically stimulate a sacral nerve comprises a needle and a dilator and optionally includes a guide wire. The needle is adapted to be inserted posterior to the sacrum through an entry point and guided into a foramen along an insertion path to a desired location. In one variation, a guide wire is inserted through a needle lumen, and the needle is withdrawn. The insertion path is dilated with a dilator inserted over the needle or over the guide wire to a diameter sufficient for inserting a stimulation lead, and the needle or guide wire is removed from the insertion path. The dilator optionally includes a dilator body and a dilator sheath fitted over the dilator body. The stimulation lead is inserted to the desired location through the dilator body lumen or the dilator sheath lumen after removal of the dilator body, and the dilator sheath or body is removed from the insertion path. If the clinician desires to separately anchor the stimulation lead, an incision is created through the entry point from an epidermis to a fascia layer, and the stimulation lead is anchored to the fascia layer. The stimulation lead can be connected to the neurostimulator to delivery therapies to treat pelvic floor disorders such as urinary control disorders, fecal control disorders, sexual dysfunction, and pelvic pain.
Owner:MEDTRONIC INC +1

Devices and methods for minimally invasive treatment of degenerated spinal discs

InactiveUS20050222681A1Accurate spacingBone implantJoint implantsExpandable cageRadio frequency
Spinal stabilization devices and their methods of insertion and use to treat degenerated lumbar, thoracic or cervical spinal discs in minimally invasive, outpatient procedures are described. In one embodiment, the spinal stabilization device is an expandable cage made of a coil or perforated cylindrical tube with a bulbous or bullet-shaped distal end and a flat or rounded proximal end. In a preferred embodiment, the spinal stabilization device is mechanically expanded to a larger diameter or is made of a superelastic nickel-titanium alloy which is thermally programmed to expand to a relatively larger diameter when a pre-determined transition temperature below body temperature is reached. To treat a degenerated disc, a guide wire is inserted into the disc and an endoscope is inserted through a posterolateral puncture in the back and advanced up to the facet of the spine. Mechanical tools or laser energy, under endoscopic visualization, are used to remove or vaporize a portion of the facet bone, creating an opening into the foraminal space in the spine for insertion of an endoscope, which enables the disc, vertebra and nerves to be seen. The passageway is expanded, mechanical tools or laser of RF energy are used to make a tunnel into the disc, and a delivery cannula is inserted up to the opening of the tunnel. An insertion tool is used to insert one or more spinal stabilization devices into the tunnel in the disc, preserving the mobility of the spine, while maintaining the proper space between the vertebra. Laser or radio frequency (RF) energy is used to coagulate bleeding, vaporize or remove debris and shrink the annulus of the disc to close, at least partially, the tunnel made in the disc.
Owner:TRIMEDYNE

Guide wire control catheters for crossing occlusions and related methods of use

InactiveUS20040102719A1Simplify the viewing processStentsBalloon catheterPercutaneous angioplastyThree vessels
A wire control catheter for aligning and guiding a guide wire through a lesion in a vessel is provided. The wire control catheter includes a shaft having a guide wire lumen and a control wire lumen. A control wire passes through the control wire lumen and is used in combination with an articulation structure to deflect or curve a distal tip portion of the catheter. The distal catheter shaft may include a centering device for centering the catheter within the vessel. The distal catheter shaft also may include a pre-dilation balloon for dilating the lesion prior to performing angioplasty or other treatment on the lesion. Additionally, a sliding sheath catheter may be used to provide additional support to the guide wire. The sliding sheath catheter is sized to fit within the guide wire lumen of the control catheter and to allow the guide wire to pass through it. A method of treatment of a blood vessel includes inserting a guide wire into the blood vessel and advancing a control catheter over the guide wire until the distal tip of catheter is near the occlusion in the blood vessel. The tip of the catheter then is deflected via a control wire and an articulation structure. The guide wire is then advanced across the occlusion. The control catheter also may be advanced across the occlusion simultaneously with the guide wire or subsequent to the guide wire crossing. Prior to crossing the occlusion, the wire control catheter may be centered using a centering device. Subsequent to crossing the occlusion, the occlusion may be pre-dilated with a pre-dilation balloon of the wire control catheter.
Owner:ST JUDE MEDICAL CARDILOGY DIV INC

System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels

InactiveUS6843797B2Effectively revascularizingSafely revascularizingBalloon catheterCannulasAtherectomyThree vessels
A system and method for opening a lumen in an occluded blood vessel, e.g., a coronary bypass graft, of a living being. The system comprises an atherectomy catheter having a working head, e.g., a rotary impacting impeller, and a debris extraction sub-system. The atherectomy catheter is located within a guide catheter. The working head is arranged to operate on, e.g., impact, the occlusive material in the occluded vessel to open a lumen therein, whereupon some debris may be produced. The debris extraction sub-system introduces an infusate liquid at a first flow rate adjacent the working head and withdraws that liquid and some blood at a second and higher flow rate, through the guide catheter to create a differential flow adjacent the working head, whereupon the debris is withdrawn in the infusate liquid and blood for collection outside the being's body. The introduction of the infusate liquid may also be used to establish an unbalanced flow adjacent the working head to enable the atherectomy catheter to be steered hydrodynamically. A guide wire having an inflatable balloon on its distal end may be used with the atherectomy catheter to block the flow of debris distally, while enabling distal tissues to be perfused with an oxygenating liquid. At least one flow control port may be provided in the guide catheter to prevent collapse of the vessel being revascularized. A cradle is provided to fix the guide catheter and guide wire in position within the body of the being while enabling the atherectomy catheter to be advanced along the guide wire and through the guide catheter.
Owner:KENSEY NASH CORP

Tissue ablation system including guidewire with sensing element

A tissue ablation system for ablating human tissue wherein sensing and ablation procedures are performed and controlled independently. A sensing wire is positioned distally to the ablation region and is adapted to pass thorough the ablation device such that it may move with or independently of the ablation device without obstructing the surface tissue interface of the ablation energy. The ablation device can ablate a substantial portion of a circumferential region of tissue, for example at or near the location where the pulmonary vein extends from the atrium. The tissue ablation system comprises an ablation device comprised of an elongated catheter with a proximal region and a distal region and an ablation element located proximate the distal region of the catheter. A sensing device having an elongated body with a proximal portion and a distal portion is adapted to be positioned within a vessel at or near a vessel ostium, wherein the sensing device is adapted to be slidably received within a lumen of the ablation device. The sensing device, a guide wire for example, may be shaped in various configurations to allow sensing device such as electrodes disposed thereon to contact the vessel wall near the ablation region. In this fashion, the sensing and ablation procedures are de-coupled such that the sensing device does not interfere or obstruct the ablation member's interface with the tissue.
Owner:MEDTRONIC CRYOCATH LP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products