Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

281 results about "Sacrum" patented technology

The sacrum (/ˈsækrəm/ or /ˈseɪkrəm/; plural: sacra or sacrums), in human anatomy, is a large, triangular bone at the base of the spine that forms by the fusing of sacral vertebrae S1–S5 between 18 and 30 years of age.

Minimally invasive apparatus for implanting a sacral stimulation lead

Methods and apparatus for implanting a stimulation lead in a patient's sacrum to deliver neurostimulation therapy that can reduce patient surgical complications, reduce patient recovery time, and reduce healthcare costs. A surgical instrumentation kit for minimally invasive implantation of a sacral stimulation lead through a foramen of the sacrum in a patient to electrically stimulate a sacral nerve comprises a needle and a dilator and optionally includes a guide wire. The needle is adapted to be inserted posterior to the sacrum through an entry point and guided into a foramen along an insertion path to a desired location. In one variation, a guide wire is inserted through a needle lumen, and the needle is withdrawn. The insertion path is dilated with a dilator inserted over the needle or over the guide wire to a diameter sufficient for inserting a stimulation lead, and the needle or guide wire is removed from the insertion path. The dilator optionally includes a dilator body and a dilator sheath fitted over the dilator body. The stimulation lead is inserted to the desired location through the dilator body lumen or the dilator sheath lumen after removal of the dilator body, and the dilator sheath or body is removed from the insertion path. If the clinician desires to separately anchor the stimulation lead, an incision is created through the entry point from an epidermis to a fascia layer, and the stimulation lead is anchored to the fascia layer. The stimulation lead can be connected to the neurostimulator to delivery therapies to treat pelvic floor disorders such as urinary control disorders, fecal control disorders, sexual dysfunction, and pelvic pain.
Owner:MEDTRONIC INC +1

Methods and apparatus for forming curved axial bores through spinal vertebrae

One or more curved axial bore is formed commencing from an anterior or posterior sacral target point and cephalad through vertebral bodies in general alignment with a visualized, trans-sacral axial instrumentation / fusion (TASIF) line in a minimally invasive, low trauma, manner. An anterior axial instrumentation / fusion line (AAIFL) or a posterior axial instrumentation / fusion line (PAIFL) that extends from the anterior or posterior target point, respectively, in the cephalad direction following the spinal curvature through one or more vertebral body is visualized by radiographic or fluoroscopic equipment. Generally curved anterior or posterior TASIF axial bores are formed in axial or parallel or diverging alignment with the visualized AAIFL or PAIFL, respectively. The anterior and posterior TASIF axial bore forming tools can be manipulated from proximal portions thereof to adjust the curvature of the anterior or posterior TASIF axial bores as they are formed in the cephalad direction. The boring angle of the distally disposed boring member or drill bit can be adjusted such that selected sections of the generally curved anterior or posterior TASIF axial bores can be made straight or relatively straight, and other sections thereof can be made curved to optimally traverse vertebral bodies and intervening disc, if present.
Owner:MIS IP HLDG LLC

Apparatus for performing a discectomy through a trans-sacral axial bore within the vertebrae of the spine

Methods and apparatus for and performing a partial or complete discectomy of an intervertebral spinal disc accessed by one or more trans-sacral axial spinal instrumentation/fusion (TASIF) axial bore formed through vertebral bodies in general alignment with a visualized, trans-sacral anterior or posterior axial instrumentation/fusion line (AAIFL or PAIFL) line. A discectomy instrument is introduced through the axial bore, the axial disc opening, and into the nucleus to locate a discectomy instrument cutting head at the distal end of the discectomy instrument shaft within the nucleus. The cutting head is operated by operating means coupled to the instrument body proximal end for extending the cutting head laterally away from the disc opening within the nucleus of the intervertebral spinal disc and for operating the cutting head to form a disc cavity within the annulus extending laterally and away from the disc opening or a disc space wherein the disc cavity extends through at least a portion of the annulus. A discectomy sheath that is first introduced to extend from the skin incision through the axial bore and into the axial disc opening having a discectomy sheath lumen that the discectomy instrument is introduced through. The discectomy sheath is preferably employed for irrigation and aspiration of the disc cavity or just aspiration if irrigation fluids are introduced through a discectomy instrument shaft lumen. The cutting head of the discectomy tool is deflected from the sheath lumen laterally and radially toward the annulus using a deflecting catheter or pull wire.
Owner:TRANSI

Apparatus for performing a discectomy through a trans-sacral axial bore within the vertebrae of the spine

Methods and apparatus for and performing a partial or complete discectomy of an intervertebral spinal disc accessed by one or more trans-sacral axial spinal instrumentation / fusion (TASIF) axial bore formed through vertebral bodies in general alignment with a visualized, trans-sacral anterior or posterior axial instrumentation / fusion line (AAIFL or PAIFL) line. A discectomy instrument is introduced through the axial bore, the axial disc opening, and into the nucleus to locate a discectomy instrument cutting head at the distal end of the discectomy instrument shaft within the nucleus. The cutting head is operated by operating means coupled to the instrument body proximal end for extending the cutting head laterally away from the disc opening within the nucleus of the intervertebral spinal disc and for operating the cutting head to form a disc cavity within the annulus extending laterally and away from the disc opening or a disc space wherein the disc cavity extends through at least a portion of the annulus. A discectomy sheath that is first introduced to extend from the skin incision through the axial bore and into the axial disc opening having a discectomy sheath lumen that the discectomy instrument is introduced through. The discectomy sheath is preferably employed for irrigation and aspiration of the disc cavity or just aspiration if irrigation fluids are introduced through a discectomy instrument shaft lumen. The cutting head of the discectomy tool is deflected from the sheath lumen laterally and radially toward the annulus using a deflecting catheter or pull wire.
Owner:BAXANO SURGICAL

Axial spinal implant and method and apparatus for implanting an axial spinal implant within the vertebrae of the spine

Spinal implants for fusing and/or stabilizing spinal vertebrae and methods and apparatus for implanting one or more of such spinal implants axially within one or more axial bore within vertebral bodies in alignment with a visualized, trans-sacral axial instrumentation/fusion (TASIF) line in a minimally invasive, low trauma, manner are disclosed. Attachment mechanisms are provided that attach or affix or force the preformed spinal implants or rods to or against the vertebral bone along the full length of a TASIF axial bore or bores or pilot holes or at the cephalad end and/or caudal end of the TASIF axial bore or bores or pilot holes. The engagement of the vertebral body is either an active engagement upon implantation of the spinal implant into the TASIF axial bore or a passive engagement of the external surface configuration with the vertebral bone caused by bone growth about the external surface configuration. A plurality of such spinal implants can be inserted axially in the same TASIF axial bore or pilot hole or separately in a plurality of TASIF axial bores or pilot holes that extend axially and in a side-by-side relation through the vertebrae and discs, if present, between the vertebrae. Discectomies and/or vertebroblasty can be performed through the TASIF axial bore or bores or pilot holes prior to insertion of the spinal implants. Vertebroblasty is a procedure for augmentation of collapsed vertebral bodies by pumped-in materials, e.g., bone cement or bone growth materials. Materials or devices can also be delivered into the disc space to separate the adjoining vertebrae and/or into damaged vertebral bodies or to strengthen them.
Owner:TRANSI

Pedicle and non-pedicle based interspinous and lateral spacers

InactiveUS20100121379A1Internal osteosythesisJoint implantsFifth lumbar vertebral bodySacrum
Pedicle and non-pedicle based interspinous and lateral spacers have an upper surface configured for engagement with an inferior surface of a fifth lumbar vertebral body, and a lower surface configured for engagement with an outer surface of a sacrum. One configuration includes a component having two opposing upper arms and two opposing lower arms. The spacer component has two ends and a central section, each end of the spacer component being configured for attachment to a respective one of the two opposing upper arms, and the central section of the spacer has a height configured for placement between a spinous process of a fifth lumbar vertebral body and a superior surface of an uppermost spinous process of a sacrum. The ends of the spacer component may be attached to the upper arms using pedicle screws, or may use snap-and-lock or other connectors. The two lower arms may either engage directly with the outer surface of a sacrum on either side of a medial ridge, or may interconnect with a separate component also having two lower arms that engage with the outer surface of a sacrum on either side of a medial ridge. Such arms are preferably bent outwardly and include inward serrations to engage with the outer surface of a sacrum on either side of a medial ridge. Other configurations include a spacer component that engages with a sacral notch.
Owner:US SPINE INC

Pedicle and non-pedicle based interspinous and lateral spacers

InactiveUS20070233088A1Internal osteosythesisJoint implantsFifth lumbar vertebral bodySacrum
Pedicle and non-pedicle based interspinous and lateral spacers have an upper surface configured for engagement with an inferior surface of a fifth lumbar vertebral body, and a lower surface configured for engagement with an outer surface of a sacrum. One configuration includes a component having two opposing upper arms and two opposing lower arms. The spacer component has two ends and a central section, each end of the spacer component being configured for attachment to a respective one of the two opposing upper arms, and the central section of the spacer has a height configured for placement between a spinous process of a fifth lumbar vertebral body and a superior surface of an uppermost spinous process of a sacrum. The ends of the spacer component may be attached to the upper arms using pedicle screws, or may use snap-and-lock or other connectors. The two lower arms may either engage directly with the outer surface of a sacrum on either side of a medial ridge, or may interconnect with a separate component also having two lower arms that engage with the outer surface of a sacrum on either side of a medial ridge. Such arms are preferably bent outwardly and include inward serrations to engage with the outer surface of a sacrum on either side of a medial ridge. Other configurations include a spacer component that engages with a sacral notch.
Owner:U S SPINAL TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products