Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

108 results about "Spinal locomotion" patented technology

Spinal locomotion results from intricate dynamic interactions between a central program in lower thoracolumbar spine and proprioceptive feedback from body in the absence of central control by brain as in complete spinal cord injury (SCI). Following SCI, the spinal circuitry below the lesion site does not become silent rather it continues to maintain active and functional neuronal properties although in a modified manner.

Methods and apparatus for performing therapeutic procedures in the spine

Methods and apparatus for forming one or more trans-sacral axial instrumentation / fusion (TASIF) axial bore through vertebral bodies in general alignment with a visualized, anterior or posterior axial instrumentation / fusion line (AAIFL or PAIFL) in a minimally invasive, low trauma, manner and providing a therapy to the spine employing the axial bore. Anterior or posterior starting positions aligned with the AAIFL or PAIFL are accessed through respective anterior and posterior tracts. Curved or relatively straight anterior and curved posterior TASIF axial bores are formed from the anterior and posterior starting positions. The therapies performed through the TASIF axial bores include discoscopy, full and partial discectomy, vertebroplasty, balloon-assisted vertebroplasty, drug delivery, electrical stimulation and various forms of spinal disc cavity augmentation, spinal disc replacement, fusion of spinal motion segments and implantation of radioactive seeds. Axial spinal implants and bone growth materials can be placed into single or multiple parallel or diverging TASIF axial bores to fuse two or more vertebrae, or distract or shock absorb two or more vertebrae.
Owner:MIS IP HLDG LLC

Spinal stabilization method

A dynamic spine stabilizer moves under the control of spinal motion providing increased mechanical support within a central zone corresponding substantially to the neutral zone of the injured spine. The dynamic spine stabilizer includes a support assembly and a resistance assembly associated with the support assembly. The resistance assembly generates greater increase in mechanical force during movement within the central zone and lesser increase in mechanical force during movement beyond the central zone. A method for using the stabilizer is also disclosed.
Owner:YALE UNIV

Systems and methods for posterior dynamic stabilization of the spine

Systems and devices for dynamically stabilizing the spine are provided. The systems include a superior component for attachment to a superior vertebra of a spinal motion segment and an inferior component for attachment to an inferior vertebral of a spinal motion segment. The interconnection between the two components enables the spinal motion segment to move in a manner that mimics the natural motion of the spinal motion segment. Methods are also provided for stabilizing the spine and for implanting the subject systems.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Devices to prevent spinal extension

InactiveUS20050288672A1Avoid painPreventing other complicationInternal osteosythesisJoint implantsPreventing painSpinal column
This invention resides in an apparatus for inhibiting full extension between upper and lower vertebral bodies, thereby preventing pain and other complications associated with spinal movement. In the preferred embodiment, the invention provides a generally transverse member extending between the spinous processes and lamina of the upper and lower vertebral bodies, thereby inhibiting full extension. Various embodiments of the invention may limit spinal flexion, rotation and / or lateral bending while preventing spinal extension. In the preferred embodiment, the transverse member is fixed between two opposing points on the lower vertebral body using pedicle screws, and a cushioning sleeve is used as a protective cover. The transverse member may be a rod or cable, and the apparatus may be used with a partial or full artificial disc replacement. To control spinal flexion, rotation and / or lateral bending one or more links may be fastened to an adjacent vertebral body, also preferably using a pedicle screw. Preferably a pair of opposing links are used between the upper and lower vertebral bodies for such purposes.
Owner:NUVASIVE

Systems and methods for posterior dynamic stabilization of the spine

InactiveUS20080097441A1Reduces and eliminates facet painLiquidityInternal osteosythesisJoint implantsSpinal columnInterconnection
Systems and devices for dynamically stabilizing the spine are provided. The systems include a superior component for attachment to a superior vertebra of a spinal motion segment and an inferior component for attachment to an inferior vertebral of a spinal motion segment. The interconnection between the two components enables the spinal motion segment to move in a manner that mimics the natural motion of the spinal motion segment while substantially offloading the facet joints of the spine. Methods are also provided for stabilizing the spine and for implanting the subject systems.
Owner:EXACTECH INC

Systems and methods for posterior dynamic stabilization of the spine

Systems and devices for dynamically stabilizing the spine are provided. The systems include a superior component for attachment to a superior vertebra of a spinal motion segment and an inferior component for attachment to an inferior vertebral of a spinal motion segment. The interconnection between the two components enables the spinal motion segment to move in a manner that mimics the natural motion of the spinal motion segment. Methods are also provided for stabilizing the spine and for implanting the subject systems.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Linearly expanding spine cage for enhanced spinal fusion

A linearly expanding spine cage has a minimized diameter in its unexpanded state that is equal to the diameter of an insertion groove cut into adjacent vertebral bodies. The cage conformably engages between the endplates of adjacent vertebrae to effectively distract the disc space, widen neuroforamina, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can be corrected, and natural curvatures maintained. The cage enhances spinal arthrodesis by creating a rigid spine segment. Expanding linearly (vertically, along the vertical axis of the adjacent spine) rather than uniformly, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces. Stability is thus achieved immediately, enabling patient function by eliminating painful motion. The cage width remains stable, so as to decrease impingement upon a second cage, or upon soft tissue structures in the immediate vicinity, including neural or vascular elements.
Owner:HOWMEDICA OSTEONICS CORP

Spinal motion preservation assemblies

Spinal motion preservation assemblies adapted for use in a spinal motion segment are disclosed including the process for delivering and assembling the spinal motion preservation assemblies in the spinal motion segment via an axial channel created with a trans-sacral approach. Many of the spinal motion preservation assemblies make use of a dual pivot. A number of different embodiments of spinal motion preservation assemblies are disclosed which include at least one component adapted for elastic deformation under compressive loads. The disclosed mobility preservation assemblies provide for dynamic stabilization of the spinal motion segment. Other variations and implementations of the teachings are disclosed, including the sheathed delivery of membranes in order to protect the membranes before and during deployment.
Owner:MIS IP HLDG LLC

Methods and apparatus for performing therapeutic procedures in the spine

Methods and apparatus for forming one or more trans-sacral axial instrumentation / fusion (TASIF) axial bore through vertebral bodies in general alignment with a visualized, anterior or posterior axial instrumentation / fusion line (AAIFL or PAIFL) in a minimally invasive, low trauma, manner and providing a therapy to the spine employing the axial bore. Anterior or posterior starting positions aligned with the AAIFL or PAIFL are accessed through respective anterior and posterior tracts. Curved or relatively straight anterior and curved posterior TASIF axial bores are formed from the anterior and posterior starting positions. The therapies performed through the TASIF axial bores include discoscopy, full and partial discectomy, vertebroplasty, balloon-assisted vertebroplasty, drug delivery, electrical stimulation and various forms of spinal disc cavity augmentation, spinal disc replacement, fusion of spinal motion segments and implantation of radioactive seeds. Axial spinal implants and bone growth materials can be placed into single or multiple parallel or diverging TASIF axial bores to fuse two or more vertebrae, or distract or shock absorb two or more vertebrae.
Owner:MIS IP HLDG LLC

Movable disc implant

A disc implant is provided which maintains intervertebral spacing and stability within the spine. In an embodiment, a disc implant may include three or more components. Components of the implant may imitate certain physiological movements associated with a healthy spine. In certain embodiments, the components of the implant may limit physiological movements to within certain ranges, imitating normal spinal movements.
Owner:ZIMMER BIOMET SPINE INC

Adjustable Distraction Cage With Linked Locking Mechanisms

ActiveUS20110130835A1Easy to deployEarly mobilizationSpinal implantsDistractionLocking mechanism
A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a refracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning
Owner:HOWMEDICA OSTEONICS CORP

Dynamic spine stabilizer

A dynamic spine stabilizer moves under the control of spinal motion providing increased mechanical support within a central zone corresponding substantially to the neutral zone of the injured spine. The dynamic spine stabilizer includes a support assembly and a resistance assembly associated with the support assembly. The resistance assembly generates greater increase in mechanical force during movement within the central zone and lesser increase in mechanical force during movement beyond the central zone. A method for using the stabilizer is also disclosed.
Owner:YALE UNIV

Facet joint prosthesis

A prosthetic implant for replacing a facet joint of a spinal motion segment includes a generally conical superior component adapted to be implanted at a surgically prepared site on a lower articular process of a cephalad vertebra of a spinal motion segment, and a cup-shaped inferior component adapted to be implanted at a surgically prepared site on a superior articular process of a caudad vertebra of the spinal motion segment.
Owner:RE SPINE

Spinal motion preservation assemblies

Spinal motion preservation assemblies adapted for use in a spinal motion segment are disclosed including the process for delivering and assembling the spinal motion preservation assemblies in the spinal motion segment via an axial channel created with a trans-sacral approach. The spinal motion preservation assemblies make use of a dual pivot. A number of different embodiments of spinal motion preservation assemblies are disclosed which include at least one component adapted for elastic deformation under compressive loads. The disclosed mobility preservation assemblies provide for dynamic stabilization (DS) of the spinal motion segment.
Owner:MIS IP HLDG LLC

Facet-preserving artificial disc replacements

Artificial disc replacement (ADR) components cooperate to limit axial rotation and / or lateral bending to a greater degree when the spine is extended than when the spine is a neutral to flexed position, thereby decreasing loads placed upon the facet joints. In the preferred embodiment, truncated articulating surfaces with non-articulating side surfaces allow increasing amounts of axial rotation and lateral bending as the total disc replacement (TDR) moves from full extension to full flexion. Limiting axial rotation and lateral bending of the TDR protects the facet joints and the Annulus Fibrosus, since the facet joints carry more load when the spine is extended than when the spine is flexed. Thus the invention serves to protect the facet joints while allowing normal or near-normal spinal motion.
Owner:FERREE BRET A +2

Hydraulically Actuated Expanding Spine Cage With Extendable Locking Anchor

A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can also be corrected, and natural curvatures restored. Preferably, the implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system preferably having a plurality of locking elements to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning
Owner:HOWMEDICA OSTEONICS CORP

Dynamic spinal stabilization system and method of using the same

InactiveUS20080234739A1Prevent and reduce compressive overloadingIncrease the lengthSuture equipmentsInternal osteosythesisDistractionRotational axis
A spinal stabilization system includes a pair of vertebral anchors and a flexible construct extending between the anchors to provide dynamic stabilization of the spine. The flexible construct includes first and second spring arms coupled to the anchors at first ends thereof and second ends coupled at a joint. The spring arms are capable of flexing toward and away from each other during movement of the spine. The system may include a biasing member for biasing movement of the spring arms toward and / or away from each other. The system may further include an adjustment feature that allows the distraction to be adjusted in situ. The stiffness characteristic of each of the spring arms may be selectively adjusted to meet the specific application. A method of stabilizing a spine includes securing anchors to selected vertebrae and coupling the flexible construct to the anchors through a top loading procedure. The flexible construct may be coupled so that a rotational axis of the flexible construct is anterior of a head portion of the anchors.
Owner:ZIMMER SPINE INC

Selectively Expanding Spine Cage With Enhanced Bone Graft Infusion

A selectively expanding spine cage has a minimized cross section in its unexpanded state that is smaller than the diameter of the neuroforamen through which it passes in the distracted spine. The cage conformably engages between the endplates of the adjacent vertebrae to effectively distract the anterior disc space, stabilize the motion segments and eliminate pathologic spine motion. Expanding selectively (anteriorly, along the vertical axis of the spine) rather than uniformly, the cage height increases and holds the vertebrae with fixation forces greater than adjacent bone and soft tissue failure forces in natural lordosis. Stability is thus achieved immediately, enabling patient function by eliminating painful motion. The cage shape intends to rest proximate to the anterior column cortices securing the desired spread and fixation, allowing for bone graft in, around, and through the implant for arthrodesis whereas for arthroplasty it fixes to endpoints but cushions the spine naturally.
Owner:HOWMEDICA OSTEONICS CORP

Dynamic spine stabilizer

A dynamic spine stabilizer moves under the control of spinal motion providing increased mechanical support within a central zone corresponding substantially to the neutral zone of the injured spine. The dynamic spine stabilizer includes a support assembly and a resistance assembly associated with the support assembly. The resistance assembly generates greater increase in mechanical force during movement within the central zone and lesser increase in mechanical force during movement beyond the central zone. A method for using the stabilizer is also disclosed.
Owner:YALE UNIV

Device and method for implantation that restores physiologic range of motion by establishing an adjustable constrained motion of the spine without intrusion of associated facet joints

A device and method of insertion and use that provides for adjustable, constrained motion of a spinal motion segment that is affected by degenerative disease, microinstability, etc. is disclosed. The device does so by establishing a specified range of motion of said target motion segment. The specified range of motion is thought to recapitulate the natural planes of movement and, in this fashion, the device restores the natural, physiologic motion of said target motion segment.
Owner:TRUSPINE USA

Load-sharing component having a deflectable post and centering spring and method for dynamic stabilization of the spine

A dynamic spinal stabilization component which supports the spine while providing for the preservation of spinal motion. The component is selectably attachable to a bone anchor for implantation in a bone of the spine. The component and bone anchor provide load sharing while preserving range of motion and reducing stress exerted upon the bone anchors and spinal anatomy. The dynamic spinal stabilization component includes a deflectable post connected by a ball-joint to a threaded anchor. Deflection of the deflectable post is controlled by a centering spring. The force / deflection properties of the dynamic bone anchor may be adapted to the anatomy and functional requirements of the patient. The dynamic spinal stabilization component may be used as a component of a dynamic stabilization system which supports the spine while providing for the preservation of spinal motion.
Owner:SPARTEK MEDICAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products