Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

236 results about "Therapeutic Procedure" patented technology

An action or administration of therapeutic agents to produce an effect that is intended to alter or stop a pathologic process.

Methods and apparatus for performing therapeutic procedures in the spine

Methods and apparatus for forming one or more trans-sacral axial instrumentation / fusion (TASIF) axial bore through vertebral bodies in general alignment with a visualized, anterior or posterior axial instrumentation / fusion line (AAIFL or PAIFL) in a minimally invasive, low trauma, manner and providing a therapy to the spine employing the axial bore. Anterior or posterior starting positions aligned with the AAIFL or PAIFL are accessed through respective anterior and posterior tracts. Curved or relatively straight anterior and curved posterior TASIF axial bores are formed from the anterior and posterior starting positions. The therapies performed through the TASIF axial bores include discoscopy, full and partial discectomy, vertebroplasty, balloon-assisted vertebroplasty, drug delivery, electrical stimulation and various forms of spinal disc cavity augmentation, spinal disc replacement, fusion of spinal motion segments and implantation of radioactive seeds. Axial spinal implants and bone growth materials can be placed into single or multiple parallel or diverging TASIF axial bores to fuse two or more vertebrae, or distract or shock absorb two or more vertebrae.
Owner:MIS IP HLDG LLC

Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures

Sinusitis and other disorders of the ear, nose and throat are diagnosed and / or treated using minimally invasive approaches with flexible or rigid instruments. Various methods and devices are used for remodeling or changing the shape, size or configuration of a sinus ostium or duct or other anatomical structure in the ear, nose or throat; implanting a device, cells or tissues; removing matter from the ear, nose or throat; delivering diagnostic or therapeutic substances or performing other diagnostic or therapeutic procedures. Introducing devices (e.g., guide catheters, tubes, guidewires, elongate probes, other elongate members) may be used to facilitate insertion of working devices (e.g. catheters e.g. balloon catheters, guidewires, tissue cutting or remodeling devices, devices for implanting elements like stents, electrosurgical devices, energy emitting devices, devices for delivering diagnostic or therapeutic agents, substance delivery implants, scopes etc.) into the paranasal sinuses or other structures in the ear, nose or throat.
Owner:ACCLARENT INC

Devices, systems and methods useable for treating sinusitis

Sinusitis and other disorders of the ear, nose and throat are diagnosed and / or treated using minimally invasive approaches with flexible or rigid instruments. Various methods and devices are used for remodeling or changing the shape, size or configuration of a sinus ostium or duct or other anatomical structure in the ear, nose or throat; implanting a device, cells or tissues; removing matter from the ear, nose or throat; delivering diagnostic or therapeutic substances or performing other diagnostic or therapeutic procedures. Introducing devices (e.g., guide catheters, tubes, guidewires, elongate probes, other elongate members) may be used to facilitate insertion of working devices (e.g. catheters e.g. balloon catheters, guidewires, tissue cutting or remodeling devices, devices for implanting elements like stents, electrosurgical devices, energy emitting devices, devices for delivering diagnostic or therapeutic agents, substance delivery implants, scopes etc.) into the paranasal sinuses or other structures in the ear, nose or throat. Specific devices (e.g., tubular guides, guidewires, balloon catheters, tubular sheaths) are provided as are methods for manufacturing and using such devices to treat disorders of the ear, nose or throat.
Owner:ACCLARENT INC

Expandable trans-septal sheath

Disclosed is an expandable transluminal sheath, for introduction into the body while in a first, low cross-sectional area configuration, and subsequent expansion of at least a part of the distal end of the sheath to a second, enlarged cross-sectional configuration. The sheath is configured for use in the vascular system. The access route is through the inferior vena cava to the right atrium, where a trans-septal puncture, followed by advancement of the catheter is completed. The distal end of the sheath is maintained in the first, low cross-sectional configuration during advancement through the atrial septum into the left atrium. The distal end of the sheath is expanded using a radial dilator. In one application, the sheath is utilized to provide access for a diagnostic or therapeutic procedure such as electrophysiological mapping of the heart, radio-frequency ablation of left atrial tissue, placement of atrial implants, valve repair, or the like.
Owner:ONSET MEDICAL CORP

Locking mechanisms for fixation devices and methods of engaging tissue

Devices, systems and methods are provided for tissue approximation and repair at treatment sites. In particular, fixation devices are provided comprising a pair of elements each having a first end, a free end opposite the first end, and an engagement surface therebetween for engaging the tissue, the first ends being moveable between an open position wherein the free ends are spaced apart and a closed position wherein the free ends are closer together with the engagement surfaces generally facing each other. The fixation devices also include a locking mechanism coupled to the elements for locking the elements in place. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site.
Owner:EVALVE

Ultrasound-based procedure for uterine medical treatment

A first method for ultrasound uterine medical treatment includes obtaining an end effector having an ultrasound medical-treatment transducer assembly, identifying a blood vessel which supplies blood to a portion of the uterus, and medically treating the blood vessel with ultrasound from the transducer assembly to substantially seal the blood vessel to substantially stop the supply of blood from the blood vessel to the portion of the uterus. In one example, shrinkage of a uterine fibroid is accomplished through use of the end effector endoscopically inserted into the uterus. A second method for ultrasound uterine medical treatment includes endoscopically inserting the end effector into the uterus and medically treating the endometrium lining with ultrasound from the transducer assembly to ablate a desired thickness of at least a portion of the endometrium lining to substantially stop abnormal uterine bleeding from the endometrium lining.
Owner:ETHICON ENDO SURGERY INC

Methods and apparatus for performing therapeutic procedures in the spine

Methods and apparatus for forming one or more trans-sacral axial instrumentation / fusion (TASIF) axial bore through vertebral bodies in general alignment with a visualized, anterior or posterior axial instrumentation / fusion line (AAIFL or PAIFL) in a minimally invasive, low trauma, manner and providing a therapy to the spine employing the axial bore. Anterior or posterior starting positions aligned with the AAIFL or PAIFL are accessed through respective anterior and posterior tracts. Curved or relatively straight anterior and curved posterior TASIF axial bores are formed from the anterior and posterior starting positions. The therapies performed through the TASIF axial bores include discoscopy, full and partial discectomy, vertebroplasty, balloon-assisted vertebroplasty, drug delivery, electrical stimulation and various forms of spinal disc cavity augmentation, spinal disc replacement, fusion of spinal motion segments and implantation of radioactive seeds. Axial spinal implants and bone growth materials can be placed into single or multiple parallel or diverging TASIF axial bores to fuse two or more vertebrae, or distract or shock absorb two or more vertebrae.
Owner:MIS IP HLDG LLC

Deep endoscopic staple and stapler

ActiveUS20050107807A1Quicker and safer and less invasiveReduce morbidityStaplesNailsSurgical stapleRigid endoscopy
An endoscopic staple and related stapling device that can be used in conjunction with flexible or rigid endoscopy. The staple can also be used for other surgical procedures. The invention relates to performing a stapling operation on internal body tissues as part of a surgical procedure, diagnostic procedure or therapeutic procedure. This invention includes a surgical staple, an associated staple holder, and an associated staple delivery and deployment device. The staple holder and delivery system have a design iteration whereby the holder can be reloaded with additional staples to be used on the same patient. There is another design iteration whereby the staple holder and stapler are reusable after appropriate cleaning and sterilization.
Owner:GRANIT MEDICAL INNOVATION

System and method for radar-assisted catheter guidance and control

InactiveUS20050096589A1Less trainingMinimizing and eliminating useEndoscopesMedical devicesRadar systemsGuidance control
A Catheter Guidance Control and Imaging (CGCI) system whereby a magnetic tip attached to a surgical tool is detected, displayed and influenced positionally so as to allow diagnostic and therapeutic procedures to be performed is described. The tools that can be so equipped include catheters, guidewires, and secondary tools such as lasers and balloons. The magnetic tip performs two functions. First, it allows the position and orientation of the tip to be determined by using a radar system such as, for example, a radar range finder or radar imaging system. Incorporating the radar system allows the CGCI apparatus to detect accurately the position, orientation and rotation of the surgical tool embedded in a patient during surgery. In one embodiment, the image generated by the radar is displayed with the operating room imagery equipment such as, for example, X-ray, Fluoroscopy, Ultrasound, MRI, CAT-Scan, PET-Scan, etc. In one embodiment, the image is synchronized with the aid of fiduciary markers located by a 6-Degrees of Freedom (6-DOF) sensor. The CGCI apparatus combined with the radar and the 6-DOF sensor allows the tool tip to be pulled, pushed, turned, and forcefully held in the desired position by applying an appropriate magnetic field external to the patient's body. A virtual representation of the magnetic tip serves as an operator control. This control possesses a one-to-one positional relationship with the magnetic tip inside the patient's body. Additionally, this control provides tactile feedback to the operator's hands in the appropriate axis or axes if the magnetic tip encounters an obstacle. The output of this control combined with the magnetic tip position and orientation feedback allows a servo system to control the external magnetic field.
Owner:NEURO KINESIS CORP

Deep endoscopic staple and stapler

ActiveUS7175648B2Quicker and safer and less invasiveReduce morbidityStaplesNailsSurgical stapleRigid endoscopy
An endoscopic staple and related stapling device that can be used in conjunction with flexible or rigid endoscopy. The staple can also be used for other surgical procedures. The invention relates to performing a stapling operation on internal body tissues as part of a surgical procedure, diagnostic procedure or therapeutic procedure. This invention includes a surgical staple, an associated staple holder, and an associated staple delivery and deployment device. The staple holder and delivery system have a design iteration whereby the holder can be reloaded with additional staples to be used on the same patient. There is another design iteration whereby the staple holder and stapler are reusable after appropriate cleaning and sterilization.
Owner:GRANIT MEDICAL INNOVATION

Use of mechanical dilator devices to enlarge ostia of paranasal sinuses and other passages in the ear, nose, throat and paranasal sinuses

Sinusitis and other disorders of the ear, nose and throat are diagnosed and / or treated using minimally invasive approaches with flexible or rigid instruments. Various methods and devices are used for remodeling or changing the shape, size or configuration of a sinus ostium or duct or other anatomical structure in the ear, nose or throat; implanting a device, cells or tissues; removing matter from the ear, nose or throat; delivering diagnostic or therapeutic substances or performing other diagnostic or therapeutic procedures. Introducing devices (e.g., guide catheters, tubes, guidewires, elongate probes, other elongate members) may be used to facilitate insertion of working devices (e.g. catheters e.g. balloon catheters, guidewires, tissue cutting or remodeling devices, devices for implanting elements like stents, electrosurgical devices, energy emitting devices, devices for delivering diagnostic or therapeutic agents, substance delivery implants, scopes etc.) into the paranasal sinuses or other structures in the ear, nose or throat. Specific devices (e.g., tubular guides, guidewires, balloon catheters, tubular sheaths) are provided as are methods for manufacturing and using such devices to treat disorders of the ear, nose or throat.
Owner:ACCLARENT INC

System and method for radar-assisted catheter guidance and control

InactiveUS7280863B2Less trainingMinimizing and eliminating useMedical devicesEndoscopesRadar systemsTip position
A Catheter Guidance Control and Imaging (CGCI) system whereby a magnetic tip attached to a surgical tool is detected, displayed and influenced positionally so as to allow diagnostic and therapeutic procedures to be performed is described. The tools that can be so equipped include catheters, guidewires, and secondary tools such as lasers and balloons. The magnetic tip performs two functions. First, it allows the position and orientation of the tip to be determined by using a radar system such as, for example, a radar range finder or radar imaging system. Incorporating the radar system allows the CGCI apparatus to detect accurately the position, orientation and rotation of the surgical tool embedded in a patient during surgery. In one embodiment, the image generated by the radar is displayed with the operating room imagery equipment such as, for example, X-ray, Fluoroscopy, Ultrasound, MRI, CAT-Scan, PET-Scan, etc. In one embodiment, the image is synchronized with the aid of fiduciary markers located by a 6-Degrees of Freedom (6-DOF) sensor. The CGCI apparatus combined with the radar and the 6-DOF sensor allows the tool tip to be pulled, pushed, turned, and forcefully held in the desired position by applying an appropriate magnetic field external to the patient's body. A virtual representation of the magnetic tip serves as an operator control. This control possesses a one-to-one positional relationship with the magnetic tip inside the patient's body. Additionally, this control provides tactile feedback to the operator's hands in the appropriate axis or axes if the magnetic tip encounters an obstacle. The output of this control combined with the magnetic tip position and orientation feedback allows a servo system to control the external magnetic field.
Owner:NEURO KINESIS CORP

System and method for magnetic-resonance-guided electrophysiologic and ablation procedures

InactiveUS7155271B2Increased resolution and reliabilityImprove accuracySurgical instrument detailsDiagnostic recording/measuringMr guidanceMr contrast agent
A system and method for using magnetic resonance imaging to increase the accuracy of electrophysiologic procedures is disclosed. The system in its preferred embodiment provides an invasive combined electrophysiology and imaging antenna catheter which includes an RF antenna for receiving magnetic resonance signals and diagnostic electrodes for receiving electrical potentials. The combined electrophysiology and imaging antenna catheter is used in combination with a magnetic resonance imaging scanner to guide and provide visualization during electrophysiologic diagnostic or therapeutic procedures. The invention is particularly applicable to catheter ablation, e.g., ablation of atrial fibrillation. In embodiments which are useful for catheter ablation, the combined electrophysiology and imaging antenna catheter may further include an ablation tip, and such embodiment may be used as an intracardiac device to both deliver energy to selected areas of tissue and visualize the resulting ablation lesions, thereby greatly simplifying production of continuous linear lesions. The invention further includes embodiments useful for guiding electrophysiologic diagnostic and therapeutic procedures other than ablation. Imaging of ablation lesions may be further enhanced by use of MR contrast agents. The antenna utilized in the combined electrophysiology and imaging catheter for receiving MR signals is preferably of the coaxial or “loopless” type. High-resolution images from the antenna may be combined with low-resolution images from surface coils of the MR scanner to produce a composite image. The invention further provides a system for eliminating the pickup of RF energy in which intracardiac wires are detuned by filtering so that they become very inefficient antennas. An RF filtering system is provided for suppressing the MR imaging signal while not attenuating the RF ablative current. Steering means may be provided for steering the invasive catheter under MR guidance. Other ablative methods can be used such as laser, ultrasound, and low temperatures.
Owner:THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE

Systems and methods for collaborative interactive visualization of 3D data sets over a network ("DextroNet")

Exemplary systems and methods are provided by which multiple persons in remote physical locations can collaboratively interactively visualize a 3D data set substantially simultaneously. In exemplary embodiments of the present invention, there can be, for example, a main workstation and one or more remote workstations connected via a data network. A given main workstation can be, for example, an augmented reality surgical navigation system, or a 3D visualization system, and each workstation can have the same 3D data set loaded. Additionally, a given workstation can combine real-time imagining with previously obtained 3D data, such as, for example, real-time or pre-recorded video, or information such as that provided by a managed 3D ultrasound visualization system. A user at a remote workstation can perform a given diagnostic or therapeutic procedure, such as, for example, surgical navigation or fluoroscopy, or can receive instruction from another user at a main workstation where the commonly stored 3D data set is used to illustrate the lecture. A user at a main workstation can, for example, see the virtual tools used by each remote user as well as their motions, and each remote user can, for example, see the virtual tool of the main user and its respective effects on the data set at the remote workstation. For example, the remote workstation can display the main workstation's virtual tool operating on the 3D data set at the remote workstation via a virtual control panel of said local machine in the same manner as if said virtual tool was a probe associated with that remote workstation. In exemplary embodiments of the present invention each user's virtual tools can be represented by their IP address, a distinct color, and / or other differentiating designation. In exemplary embodiments of the present invention the data network can be either low or high bandwidth. In low bandwidth embodiments a 3D data set can be pre-loaded onto each user's workstation and only the motions of a main user's virtual tool and manipulations of the data set sent over the network. In high bandwidth embodiments, for example, real-time images, such as, for example, video, ultrasound or fluoroscopic images, can be also sent over the network as well.
Owner:BRACCO IMAGINIG SPA

Modular interfaces and drive actuation through barrier

The invention relates generally to robotically controlled systems, such as medical robotic systems. In one variation, a robotic catheter system is configured with a sterile barrier capable for transmitting a rotary force from a drive system on one side of the barrier to surgical tool on the other side of the sterile barrier for performing minimally invasive diagnostic and therapeutic procedures. Modularized drive systems for robotics arc also disclosed herein.
Owner:AURIS HEALTH INC

Localized production of microbubbles and control of cavitational and heating effects by use of enhanced ultrasound

The invention is a method of using ultrasound waves that are focused at a specific location in a medium to cause localized production of bubbles at that location and to control the production, and the cavitational and heating effects that take place there. According to the method of the invention, the production and control is accomplished by selecting the range of parameters of multiple transducers that are focused at the location such that they produce by interference specific waveforms at the focal point, which are not produced at other locations. Preferably the region within the focal zone of all the transducers in which the specific waveform develops at significant intensities, is typically very small. The invention is also a system for carrying out the method. The method and system of the invention can be used to perform a variety of therapeutic procedures. Typical of such procedures is occlusion of varicose veins.
Owner:SONNETICA LTD

Lung device with sealing features

InactiveUS20060025815A1Reduce air leakageMitigates pneumothorax and hemothoraxSurgical needlesMedical devicesThoracic structureThoracic cavity
This invention relates generally to a design of lung devices for safely performing a transthoracic procedure. In particular, the invention provides devices and methods of using these devices to access the thoracic cavity with minimal risk of causing pneumothorax or hemothorax. More specifically, the invention enables diagnostic and therapeutic access to a thoracic cavity using large bore instruments. This invention also provides a method for diagnostic and therapeutic procedures using a device capable of sealing the wound upon withdrawal of the device. The invention includes a device comprising an elongated body adapted to make contact with a tissue of a subject through an access hole, and a sealant delivery element. The invention also includes a method of performing tissue treatment or diagnosis in a subject.
Owner:EKOS CORP

Expandable trans-septal sheath

Disclosed is an expandable transluminal sheath, for introduction into the body while in a first, low cross-sectional area configuration, and subsequent expansion of at least a part of the distal end of the sheath to a second, enlarged cross-sectional configuration. The sheath is configured for use in the vascular system and has utility in the performance of procedures in the left atrium. The access route is through the inferior vena cava to the right atrium, where a trans-septal puncture, followed by advancement of the catheter is completed. The distal end of the sheath is maintained in the first, low cross-sectional configuration during advancement to the right atrium and through the atrial septum into the left atrium. The distal end of the sheath is subsequently expanded using a radial dilatation device. In an exemplary application, the sheath is utilized to provide access for a diagnostic or therapeutic procedure such as electrophysiological mapping of the heart, radio-frequency ablation of left atrial tissue, placement of left atrial implants, mitral valve repair, or the like.
Owner:ONSET MEDICAL CORP

Systems and methods using expandable bodies to push apart cortical bone surfaces

Systems and methods insert an expandable body in a collapsed configuration into a space defined between cortical bone surfaces. The space can, e.g., comprise a fracture or an intervertebral space. The systems and methods cause expansion of the expandable body within the space, thereby pushing apart the cortical bone surfaces to, e.g., reduce the fracture or push apart adjacent vertebral bodies as part of a therapeutic procedure.
Owner:ORTHOPHOENIX

Methods, systems and devices for a clinical data reporting and surgical navigation

Three components are proposed, each having at its core a system for producing measurements of the relative motion of anatomical structures of mammals (the “measurement system”). The measurement system in this case would be comprised of an apparatus for imaging the joint of through a prescribed motion, and a process and mechanism for deriving quantitative measurement output data from the resulting images. The components of the present invention include: (1) a software device for reporting measurement output of the measurement system and for allowing users to interact with the measurement output data; (2) an apparatus and method for utilizing measurement output of the measurement system for therapeutic and surgical applications such as surgical navigation and patient positioning during a therapeutic procedure; and (3) an apparatus providing input image data for the measurement system that assists with the imaging of joints connecting anatomical regions that are in motion during operation.
Owner:WENZEL SPINE

Expandable trans-septal sheath

Disclosed is an expandable transluminal sheath, for introduction into the body while in a first, low cross-sectional area configuration, and subsequent expansion of at least a part of the distal end of the sheath to a second, enlarged cross-sectional configuration. The sheath is configured for use in the vascular system and has utility in the performance of procedures in the left atrium. The access route is through the inferior vena cava to the right atrium, where a trans-septal puncture, followed by advancement of the catheter is completed. The distal end of the sheath is maintained in the first, low cross-sectional configuration during advancement to the right atrium and through the atrial septum into the left atrium. The distal end of the sheath is subsequently expanded using a radial dilatation device. In an exemplary application, the sheath is utilized to provide access for a diagnostic or therapeutic procedure such as electrophysiological mapping of the heart, radio-frequency ablation of left atrial tissue, placement of left atrial implants, mitral valve repair, or the like.
Owner:ONSET MEDICAL CORP

System and method for a magnetic catheter tip

A system whereby a magnetic tip attached to a surgical tool is detected, displayed and influenced positionally so as to allow diagnostic and therapeutic procedures to be performed rapidly, accurately, simply, and intuitively is described. The tools that can be so equipped include catheters, guidewires, and secondary tools such as lasers and balloons, in addition biopsy needles, endoscopy probes, and similar devices. The magnetic tip allows the position and orientation of the tip to be determined without the use of x-rays by analyzing a magnetic field. The magnetic tip further allows the tool tip to be pulled, pushed, turned, and forcefully held in the desired position by applying an appropriate magnetic field external to the patient's body. A Virtual Tip serves as an operator control. Movement of the operator control produces corresponding movement of the magnetic tip inside the patient's body. Additionally, the control provides tactile feedback to the operator's hand in the appropriate axis or axes if the magnetic tip encounters an obstacle. The output of the control combined with the magnetic tip position and orientation feedback allows a servo system to control the external magnetic field by pulse width modulating the positioning electromagnet. Data concerning the dynamic position of a moving body part such as a beating heart offsets the servo systems response in such a way that the magnetic tip, and hence the secondary tool is caused to move in unison with the moving body part. The tip position and orientation information and the dynamic body part position information are also utilized to provide a display that allows three dimensional viewing of the magnetic tip position and orientation relative to the body part.
Owner:NEURO KINESIS CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products