Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1473results about "Guide wires" patented technology

Guide wire control catheters for crossing occlusions and related methods of use

InactiveUS20040102719A1Simplify the viewing processStentsBalloon catheterPercutaneous angioplastyThree vessels
A wire control catheter for aligning and guiding a guide wire through a lesion in a vessel is provided. The wire control catheter includes a shaft having a guide wire lumen and a control wire lumen. A control wire passes through the control wire lumen and is used in combination with an articulation structure to deflect or curve a distal tip portion of the catheter. The distal catheter shaft may include a centering device for centering the catheter within the vessel. The distal catheter shaft also may include a pre-dilation balloon for dilating the lesion prior to performing angioplasty or other treatment on the lesion. Additionally, a sliding sheath catheter may be used to provide additional support to the guide wire. The sliding sheath catheter is sized to fit within the guide wire lumen of the control catheter and to allow the guide wire to pass through it. A method of treatment of a blood vessel includes inserting a guide wire into the blood vessel and advancing a control catheter over the guide wire until the distal tip of catheter is near the occlusion in the blood vessel. The tip of the catheter then is deflected via a control wire and an articulation structure. The guide wire is then advanced across the occlusion. The control catheter also may be advanced across the occlusion simultaneously with the guide wire or subsequent to the guide wire crossing. Prior to crossing the occlusion, the wire control catheter may be centered using a centering device. Subsequent to crossing the occlusion, the occlusion may be pre-dilated with a pre-dilation balloon of the wire control catheter.

Method and apparatus for treating annular fissures in intervertebral discs

A device is described that may be positioned at a location in an intervertebral disc for diagnosis or treatment of the disc. Treatment may include, for example, applying energy or removing material, and may decrease intradiscal pressure. Radiofrequency energy may be applied. A percutaneous method of repairing a fissure in the annulus pulposus comprises placing an energy source adjacent to the fissure and providing sufficient energy to the fissure to raise the temperature to at least about 45-70° C. and for a sufficient time to cause the collagen to weld. An intervertebral fissure also can be treated by placing a catheter with a lumen adjacent to the fissure and injecting sealant into the fissure via the catheter, thereby sealing the fissure. An intervertebral fissure additionally can be treated by providing a catheter having a distal end, a proximal end, a longitudinal axis, and an intradiscal section at the catheter's distal end on which there is at least one functional element. The next step is applying a force longitudinally to the proximal of the catheter which is sufficient to advance the intradiscal section through the nucleus pulposus and around an inner wall of an annulus fibrosus, but which force is insufficient to puncture the annulus fibrosus. Next the functional element is positioned at a selected location of the disc by advancing or retracting the catheter and optionally twisting the proximal end of the catheter. Then the functional unit treats the annular fissure. Optionally, there is an additional step of adding a substance to seal the fissure. An externally guidable intervertebral disc apparatus also is disclosed.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products