Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

211 results about "Tissue sampling" patented technology

Tissue sampling refers to various procedures to obtain bodily fluids or tissue (e.g. bone, muscle, etc.) for analysis.

Tissue sampling devices, systems and methods

ActiveUS20100312141A1Minimize unintended injuryHigh strengthBronchoscopesGuide wiresNeedle penetrationMedicine
Methods, devices, and systems are described herein that allow for improved sampling of tissue from remote sites in the body. A tissue sampling device comprises a handle allowing single hand operation. In one variation the tissue sampling device includes a blood vessel scanning means and tissue coring means to excise a histology sample from a target site free of blood vessels. The sampling device also includes an adjustable stop to control the depth of a needle penetration. The sampling device may be used through a working channel of a bronchoscope.
Owner:BRONCUS MEDICAL

Tissue sampling and removal apparatus and method

A tissue sampling device (10) for retrieving one or more tissue samples from a patient is either handheld or mounted to a moveable carriage (184) and advanced so that the needle tip (152) is introduced into the patient. The needle tip (152) is advanced until the tissue receiving basket (154) reaches the tissue sample target zone (190). Vacuum pressure is supplied to the basket (154) via a vacuum tube (144) so that tissue to be sampled is drawn into the basket (154). The cutter (42) is rotated and advanced linearly to cut a tissue sample (212) which is then retrieved by retracting the needle (40).
Owner:TYCO HEALTHCARE GRP LP

System for non-invasive measurement of glucose in humans

InactiveUS6865408B1Efficient collectionMaximize glucose net analyte signal-to-noise ratioRadiation pyrometryDiagnostics using spectroscopyData acquisitionNon invasive
An apparatus and method for non-invasive measurement of glucose in human tissue by quantitative infrared spectroscopy to clinically relevant levels of precision and accuracy. The system includes six subsystems optimized to contend with the complexities of the tissue spectrum, high signal-to-noise ratio and photometric accuracy requirements, tissue sampling errors, calibration maintenance problems, and calibration transfer problems. The six subsystems include an illumination subsystem, a tissue sampling subsystem, a calibration maintenance subsystem, an FTIR spectrometer subsystem, a data acquisition subsystem, and a computing subsystem.
Owner:INLIGHT SOLUTIONS

Endoscopy device with removable tip

The present invention provides an endoscope for in vivo imaging the cells, tissue, organs or body cavities of humans or other animals to observe and locate, diagnosis and / or treat disease. Illumination sources, image detectors, sensors may be provided alone or in combination on the removable tip allowing functional alterations or optimization for a particular procedure. Endoscope features such as an instrument channel supporting tissue sampling, suction, treatment, micro-surgery, optical computed tomography, confocal microscopy, laser or drug treatments, injections, gene-therapy, marking, implanting or other medical techniques are maintained.
Owner:PERCEPTRONIX MEDICAL

Tissue sampling and removal apparatus and method

A tissue sampling device (10) for retrieving one or more tissue samples from a patient is either handheld or mounted to a moveable carriage (184) and advanced so that the needle tip (152) is introduced into the patient. The needle tip (152) is advanced until the tissue receiving basket (154) reaches the tissue sample target zone (190). Vacuum pressure is supplied to the basket (154) via a vacuum tube (144) so that tissue to be sampled is drawn into the basket (154). The cutter (42) is rotated and advanced linearly to cut a tissue sample (212) which is then retrieved by retracting the needle (40).
Owner:TYCO HEALTHCARE GRP LP

Rotating fine needle for core tissue sampling

A medical instrument usable with an ultrasound-endoscope for performing a needle biopsy on a patient's internal body tissues usable at a surgical site not visible to the unaided eye or viewed endoscopically, comprises an elongate tubular member with a hollow needle element connected at its distal end, a sheath member housing said tubular member and needle element, an actuator subassembly with a shifter member operatively connected to elongate tubular member's proximal end, and a distal camming subassembly, said subassembly enabling a rotating motion of said needle member while handle actuator is moved in the forward direction. Upon inserting an ultrasound-endoscope into a patient and locating a mass, the fine needle with sharply pointed spoon shaped distal end is inserted into the mass aided by endoscopic and ultrasonographic guidance. Once in the mass, a camming action is initiated, causing rotation of the fine needle within the mass, resulting in a scooped out core biopsy. This instrument enables the performance of a fine needle aspiration requiring only one or two needle introductions, with a resultant core biopsy substantial enough for diagnostic purposes.
Owner:GRANIT MEDICAL INNOVATION

Noninvasive determination of alcohol in tissue

An apparatus and method for non-invasive determination of attributes of human tissue by quantitative infrared spectroscopy. The system includes subsystems optimized to contend with the complexities of the tissue spectrum, high signal-to-noise ratio and photometric accuracy requirements, tissue sampling errors, calibration maintenance problems, and calibration transfer problems. The subsystems include an illumination subsystem, a tissue sampling subsystem, a spectrometer subsystem, a data acquisition subsystem, and a processing subsystem. The invention is applicable, as examples, to determining the concentration or change of concentration of alcohol in human tissue.
Owner:ROCKLEY PHOTONICS LTD

Method and apparatus for tissue sampling

A tissue sampling device (10) includes a sheath (20) having an inner surface having a proximal end and a distal end, and an inner surface defining a passage. An inner tube (50) is disposed within the passage. The inner tube has an inner surface defining a passage, and an outer surface radially spaced outward from the inner surface. A cutting needle is pivotally mounted to the inner tube and pivots between a first position radially inward of the inner surface of the sheath and a second position substantially radially outward of the outer surface of the inner tube. Relative movement between the inner tube and the sheath causes the cutting needle to move between the first position and the second position. Rotation of the inner tube relative to the sheath when the cutting needle is in the second position causes the cutting needle to remove tissue in a helical path.
Owner:THE CLEVELAND CLINIC FOUND

System for Noninvasive Determination of Analytes in Tissue

An apparatus and method for noninvasive determination of analyte properties of human tissue by quantitative infrared spectroscopy to clinically relevant levels of precision and accuracy. The system includes subsystems optimized to contend with the complexities of the tissue spectrum, high signal-to-noise ratio and photometric accuracy requirements, tissue sampling errors, calibration maintenance problems, and calibration transfer problems. The subsystems can include an illumination / modulation subsystem, a tissue sampling subsystem, a data acquisition subsystem, a computing subsystem, and a calibration subsystem. The invention can provide analyte property determination and identity determination or verification from the same spectroscopic information, making unauthorized use or misleading results less likely than in systems that use separate analyte and identity determinations. The invention can be used to control and monitor individuals accessing controlled environments.
Owner:ROCKLEY PHOTONICS LTD

Medical devices having full or partial polymer coatings and their methods of manufacture

Medical devices for insertion into the body of human or veterinary patients, wherein the device comprises a) a working element (e.g. a wire, a guidewire, a tube, a catheter, a cannula, a scope (e.g., rigid or flexible endoscope, laparoscope, sigmoidoscope, cystoscope, etc.) a probe, an apparatus for collecting information from a location within the body (e.g., an electrode, sensor, camera, scope, sample withdrawal apparatus, biopsy or tissue sampling device, etc.) which has an outer surface and b) a continuous or non-continuous coating on the outer surface of the working element. The outer surface of the working element is prepared to create a surface topography which promotes mechanical or frictional engagement of the coating to the working element. In some embodiments the coating is a lubricious coating, such as a fluorocarbon coating or a hydrogel that becomes lubricious when contacted by a liquid. In some embodiments, the coating may expand as swell. Also disclosed as methods for manufacturing such devices.
Owner:MICROVENTION INC

Biopsy needle with flexible length

An endoscopic tissue-sampling needle is provided including an elongate needle shaft having a proximal shaft portion and a distal shaft portion. The distal shaft portion extends into and is fixedly attached to an inner diameter of a proximal shaft portion lumen. The distal shaft portion lumen is configured for collection of patient tissue by including a distal penetrating tip and / or a side aperture with a cutting edge configured to excise tissue from a target site in a patient body. The proximal shaft portion includes a length of cable tube configured to provide enhanced flexibility in use via an endoscope.
Owner:COOK MEDICAL TECH LLC

Cell and tissue collection method and device

In an embodiment of the invention, a frictional tissue sampling device with an expandable balloon and associated abrasive material can be used to obtain tissue biopsy samples. A frictional tissue sampling device with expandable abrasive material can be used to obtain an epithelial tissue biopsy sample from lesions. The device can be otherwise used to sample specific locations. In various embodiments, the head of the device can be passes through a catheter into a body canal to sample epithelial tissue.
Owner:HISTOLOGICS

Endoscope apparatus, actuators, and methods therefor

The present invention provides, in part, a dexterous endoscope apparatus, referred to herein as a MicroFlex Scope (MFS). The MFS is an novel, small diameter, e.g., less about 1 mm to about 4 mm, about 1 mm to about 3 mm, etc., dexterous endoscope that allows for access, direct visualization, tissue sampling, treatment, etc. of body lumens. In one embodiment, the distal end of the MFS of the invention is an ultra-flexible tip that comprises a plurality of thin, curved shape memory alloy (SMA) actuator elements attached to at least one structural skeleton, e.g., a coil spring skeleton or hinge structure. The SMA actuator elements in each structural skeleton segment are indirectly heated by a heater element and produce force in response to their temperature relative to specific thresholds. In certain embodiments, the heater element may include an integrated heater / sensor element adapted to heat the actuator element and to sense the temperature and bend state of the actuator element. In configurations comprising a plurality of actuator elements, multiplexing / demultiplexing of heating currents and sensor voltages may be accomplished via a parallel bus and demulitplexing circuit. In this regard, a demultiplexing circuit using standard microelectronic fabrication techniques may be designed to achieve individual sensing and control over each actuator element.
Owner:UNIV OF COLORADO THE REGENTS OF

Tissue Sampling Device And Method

A tissue sampling device includes a cannula having an elongate tubular body with a sharpened coring tip. A shaft extends within the cannula and is coupled with a cutter having an axially advancing wire extending between a distal end of the shaft and the sharpened coring tip. The axially advancing wire is movable in a cutting path defining an arc about the longitudinal axis, by way of rotating the shaft relative to the cannula.
Owner:COOK MEDICAL TECH LLC

Medical devices having full or partial polymer coatings and their methods of manufacture

Medical devices for insertion into the body of human or veterinary patients, wherein the device comprises a) a working element (e.g. a wire, a guidewire, a tube, a catheter, a cannula, a scope (e.g., rigid or flexible endoscope, laparoscope, sigmoidoscope, cystoscope, etc.) a probe, an apparatus for collecting information from a location within the body (e.g., an electrode, sensor, camera, scope, sample withdrawal apparatus, biopsy or tissue sampling device, etc.) which has an outer surface and b) a continuous or non-continuous coating on the outer surface of the working element. The outer surface of the working element is prepared to create a surface topography which promotes mechanical or frictional engagement of the coating to the working element. In some embodiments the coating is a lubricious coating, such as a fluorocarbon coating or a hydrogel that becomes lubricious when contacted by a liquid. In some embodiments, the coating may expand as swell. Also disclosed as methods for manufacturing such devices.
Owner:MICROVENTION INC

Ablation device with drug delivery component and biopsy tissue-sampling component

InactiveUS20130324910A1Improve visualizationReduce or eliminate tumor reoccurrenceElectrotherapySurgical needlesBiomedical engineeringBiopsy
An ablation device includes a handle assembly, an ablation electrode extending from the handle assembly, and one or more delivery needles extending from the handle assembly. The ablation electrode includes an ablation needle. The ablation needle includes a distal end portion including a drug delivery port defined therethrough. The ablation device also includes and a biopsy tool extending from the handle assembly.
Owner:TYCO HEALTHCARE GRP LP

System, method and device for tissue-based diagnosis

The current invention provides devices, methods and systems involving application of energy and / or a liquefaction promoting medium to a tissue of interest to generate a liquefied sample comprising tissue constituents so as to provide for rapid tissue sampling, tissue decontamination as well as qualitative and / or quantitative detection of analytes that may be part of tissue constituents (e.g., several types of biomolecules, drugs, and microbes). In addition, the current invention provides specific compositions of the said liquefaction promoting medium so as to facilitate liquefaction, preserve liquefied tissue constituents, and enable delivery of molecules into tissues. Determination of tissue composition in the liquefied tissue sample can be used in a variety of applications, including diagnosis or prognosis of local as well as systemic diseases, evaluating bioavailability of therapeutics in different tissues following drug administration, forensic detection of drugs-of-abuse, evaluating changes in the tissue microenvironment following exposure to a harmful agent, and various other applications. The methods, devices and systems are used to deliver one or more drugs through or into the site of the tissue to be liquefied.
Owner:RGT UNIV OF CALIFORNIA

Apparatuses for Noninvasive Determination of in vivo Alcohol Concentration using Raman Spectroscopy

Methods and apparatuses for the determination of an attribute of the tissue of an individual use non-invasive Raman spectroscopy. For example, the alcohol concentration in the blood or tissue of an individual can be determined non-invasively. A portion of the tissue is illuminated with light, the light propagates into the tissue where it is Raman scattered within the tissue. The Raman scattered light is then detected and can be combined with a model relating Raman spectra to alcohol concentration in order to determine the alcohol concentration in the blood or tissue of the individual. Correction techniques can be used to reduce determination errors due to detection of light other than that from Raman scattering from the alcohol in the tissue. Other biologic information can be used in combination with the Raman spectral properties to aid in the determination of alcohol concentration, for example age of the individual, height of the individual, weight of the individual, medical history of the individual and his / her family, ethnicity, skin melanin content, or a combination thereof. The method and apparatus can be highly optimized to provide reproducible and, preferably, uniform radiance of the tissue, low tissue sampling error, depth targeting of the tissue layers or sample locations that contain the attribute of interest, efficient collection of Raman spectra from the tissue, high optical throughput, high photometric accuracy, large dynamic range, excellent thermal stability, effective calibration maintenance, effective calibration transfer, built-in quality control, and ease-of-use.
Owner:ROCKLEY PHOTONICS LTD

Method and apparatus for subsurface tissue sampling

InactiveUS20140296741A1Reducing and avoiding significant damageSimple and inexpensive and safe methodSurgical needlesVaccination/ovulation diagnosticsBiological tissueTissue sampling
Exemplary embodiments of method and apparatus are provided for removing a subsurface sample of a biological tissue while leaving the overlying tissue substantially undamaged. A hollow needle can be provided that includes an opening in the wall and a protruding cutting edge adjacent to the opening. A sliding sleeve can be provided over a portion of the needle. The needle and sleeve can be advanced into the tissue such that the cutting edge is deeper than the distal end of the sleeve. The needle may then be withdrawn while holding the sleeve stationary, such that a sample is severed by the cutting edge and directed into the hollow needle through the opening, until the cutting edge reaches the end of the sleeve. The sleeve and needle containing the sample can then be withdrawn from the tissue together.
Owner:THE GENERAL HOSPITAL CORP

Apparatus and Method for Controlling Operation of Vehicles or Machinery by Intoxicated or Impaired Individuals

The present invention discloses apparatuses and methods for non-invasive determination of attributes of human tissue by quantitative infrared spectroscopy. The embodiments of the present invention include subsystems optimized to contend with the complexities of the tissue measurements. The subsystems can include an illumination / modulation subsystem, a tissue sampling subsystem, a calibration maintenance subsystem, a data acquisition subsystem, and a computing subsystem. Embodiments of the present invention provide analyte property determination and identity determination or verification from the same spectroscopic information, making unauthorized use or misleading results less likely that in systems that include separate analyte and identity determinations. The invention can be used to prevent operation of automobiles or other equipment unless the operator has an acceptable alcohol concentration, and to limit operation of automobiles or other equipment to authorized individuals who are not intoxicated or drug-impaired.
Owner:RIDDER TRENT +2

System for Noninvasive Determination of Analytes in Tissue

An apparatus and method for noninvasive determination of analyte properties of human tissue by quantitative infrared spectroscopy to clinically relevant levels of precision and accuracy. The system includes subsystems optimized to contend with the complexities of the tissue spectrum, high signal-to-noise ratio and photometric accuracy requirements, tissue sampling errors, calibration maintenance problems, and calibration transfer problems. The subsystems can include an illumination / modulation subsystem, a tissue sampling subsystem, a data acquisition subsystem, a computing subsystem, and a calibration subsystem. The invention can provide analyte property determination and identity determination or verification from the same spectroscopic information, making unauthorized use or misleading results less likely than in systems that use separate analyte and identity determinations. The invention can be used to control and monitor individuals accessing controlled environments.
Owner:ROCKLEY PHOTONICS LTD

Frictional trans-epithelial tissue disruption collection apparatus and method of inducing an immune response

In an embodiment of the invention, a frictional tissue sampling device with a head designed to be rotated without rotating off the designated site can be used to obtain tissue biopsy samples. A frictional tissue sampling device with a head designed to be rotated without rotating off the designated site can be used to obtain an epithelial tissue biopsy sample from lesions. The device can be otherwise used to sample specific locations. In various embodiments, the head of the device is narrow and pointed with a hybrid pear shaped diamond facet. Abrasive material can be adhered to the facet.
Owner:HISTOLOGICS

Methods and devices for collection of soft tissue

A tissue sampling apparatus comprises a tubular body having a primary lumen for receiving a tissue sample. The tubular body includes a distal end, a proximal end, and a longitudinal axis extending from the proximal end to the distal end. The tissue sampling apparatus further comprises a cutting cylinder having a distal cutting edge, which is movable both distally and proximally relative to the tubular body. A band having an eyelet disposed therein extends across a distal end of the tissue sampling apparatus, wherein the eyelet is advantageously movable relative to the distal cutting edge in order to sever a distal end of the tissue sample.
Owner:DEVICOR MEDICAL PROD

Biopsy device with multiple cutters

A tissue sampling device comprises an elongated tube having a distal end with at least two apertures. The device further comprises at least two cutters disposed within the elongated tube, wherein each cutter is configured to be independently displaced longitudinally within the elongated tube and across a respective one of the apertures to sever tissue prolapsed within the respective aperture. A method comprises inserting the device in tissue. The method further comprises receiving a first prolapsed portion of the tissue into the first aperture, longitudinally displacing the first cutter across the first aperture to sever the first prolapsed tissue portion within the first aperture, receiving a second prolapsed portion of the tissue into the second aperture, and longitudinally displacing the second cutter independently from the first cutter across the second aperture to sever the second prolapsed tissue portion within the second aperture.
Owner:BOSTON SCI SCIMED INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products