Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

2918 results about "Scattered light" patented technology

Enhanced LCD backlight

ActiveUS20060056166A1Improved backlight assemblyAvoid less flexibilityElectric discharge tubesDiffusing elementsCompression moldingEllipsoidal particle
The present invention provides an improved light guide with inherently more flexibility for display system designers and higher optical efficiency. By using a light guide containing substantially aligned non-spherical particles, more efficient control of the light scattering can be achieved. One or more regions containing ellipsoidal particles may be used and the particle sizes may vary between 2 and 100 microns in the smaller dimension. The light scattering regions may be substantially orthogonal in their axis of alignment. Alternatively, one or more asymmetrically scattering films can be used in combination with a backlight light guide and a reflector to produce an efficient backlight system. The light guides may be manufactured by embossing, stamping, or compression molding a light guide in a suitable light guide material containing asymmetric particles substantially aligned in one direction. The light scattering light guide or non-scattering light guide may be used with one or more light sources, collimating films or symmetric or asymmetric scattering films to produce an efficient backlight that can be combined with a liquid crystal display or other transmissive display. By maintaining more control over the scattering, the efficiency of the recycling of light by using reflective polarizers can also be increased.
Owner:MASSACHUSETTS DEV FINANCE AGENCY

System for electromagnetic radiation dermatology and head for use therewith

A system for treating a selected dermatologic problem and a head for use with such system are provided. The head may include an optical waveguide having a first end to which EM radiation appropriate for treating the condition is applied. The waveguide also has a skin-contacting second end opposite the first end, a temperature sensor being located within a few millimeters, and preferably within 1 to 2 millimeters, of the second end of the waveguide. A temperature sensor may be similarly located in other skin contacting portions of the head. A mechanism is preferably also provided for removing heat from the waveguide and, for preferred embodiments, the second end of the head which is in contact with the skin has a reflection aperture which is substantially as great as the radiation back-scatter aperture from the patient's skin. Such aperture may be the aperture at the second end of the waveguide or a reflection plate or surface of appropriate size may surround the waveguide or other light path at its second end. The portion of the back-scattered radiation entering the waveguide is substantially internally reflected therein, with a reflector being provided, preferably at the first end of the waveguide, for returning back-scattered light to the patient's skin. The reflector may be angle dependent so as to more strongly reflect back scattered light more perpendicular to the skin surface than back scattered radiation more parallel to the skin surface. Controls are also provided responsive to the temperature sensing for determining temperature at a predetermined depth in the patient's skin, for example at the DE junction, and for utilizing this information to detect good thermal contact between the head and the patient's skin and to otherwise control treatment. The head may also have a mechanism for forming a reflecting chamber under the waveguide and drawing a fold of skin therein, or for providing a second enlarged waveguide to expand the optical aperture of the radiation.
Owner:PALOMAR MEDICAL TECH

Monitoring and control system for blood processing

The invention relates generally to methods of monitoring and controlling the processing of blood and blood samples, particularly the separation of blood and blood samples into its components. In one aspect, the invention relates to optical methods, devices and device components for measuring two-dimensional distributions of transmitted light intensities, scattered light intensities or both from a separation chamber of a density centrifuge. In embodiment, two-dimensional distributions of transmitted light intensities, scattered light intensities or both measured by the methods of the present invention comprise images of a separation chamber or component thereof, such as an optical cell of a separation chamber. In another aspect, the present invention relates to multifunctional monitoring and control systems for blood processing, particularly blood processing via density centrifugation. Feedback control systems are provided wherein two-dimensional distributions of transmitted light intensities, scattered light intensities or both are measured, processed in real time and are used as the basis of output signals for controlling blood processing. In another aspect, optical cells and methods of using optical cells for monitoring and control blood processing are provided.
Owner:TERUMO BCT

Method and apparatus for noninvasively monitoring parameters of a region of interest in a human body

A method and system are presented for use in noninvasive monitoring at least one parameter of a region of interest in a human body. The system comprises a measurement unit and a control unit. The measurement unit comprises an optical unit having an illumination assembly configured to define at least one output port for illuminating light, and a light detection assembly configured to define at least one light input port for collecting light and to generate measured data indicative of the collected light; and an acoustic unit configured to generate acoustic waves of a predetermined ultrasound frequency range. The measurement unit is configured and operable to provide an operating condition such that the acoustic waves of the predetermined frequency range overlap with an illuminating region within the region of interest and substantially do not overlap with a region outside the region of interest, and that the detection assembly collects light scattered from the region of interest and light scattered from the region outside the region of interest. The measured data is thus indicative of scattered light having both ultrasound tagged and untagged light portions, thereby enabling to distinguish between light responses of the region of interest and the region outside the region of interest. The control unit is connectable to the optical unit and to the acoustic unit to operate these units, and is responsive to the measured data and preprogrammed to process and analyze the measured data to extract therefrom data indicative of a light response of the region of interest and determine the at least one desired parameter.
Owner:OR NIM MEDICAL

Laser scanning digital camera with pupil periphery illumination and potential for multiply scattered light imaging

A portable, lightweight digital imaging device uses a slit scanning arrangement to obtain an image of the eye, in particular the retina. In at least one embodiment, a digital retinal imaging device includes an illumination source operable to produce a source beam, wherein the source beam defines an illumination pathway, a scanning mechanism operable to cause a scanning motion of the illumination pathway in one dimension with respect to a target, an optical element situated within the illumination pathway, the optical element operable to focus the illumination pathway into an illumination slit at a plane conjugate to the target, wherein the illumination slit is slit shaped, a first two dimensional detector array operable to detect illumination returning from the target and acquire one or more data sets from the detected illumination, wherein the returning illumination defines a detection pathway, and a shaping mechanism positioned within the illumination pathway, wherein the shaping mechanism shapes the source beam into at least one arc at a plane conjugate to the pupil. In at least one exemplary embodiment, the digital retinal imaging device is operable to minimize at least one aberration from the optical element or an unwanted reflection from the target or a reflection from a device.
Owner:INDIANA UNIV RES & TECH CORP

Multispectral imaging for quantitative contrast of functional and structural features of layers inside optically dense media such as tissue

A method for the evaluation of target media parameters in the visible and near infrared is disclosed. The apparatus comprises a light source, an illuminator/collector, optional illumination wavelength selector, an optional light gating processor, an imager, detected wavelength selector, controller, analyzer and a display unit. The apparatus illuminates an in situ sample of the target media in the visible through near infrared spectral region using multiple wavelengths and gated light. The sample absorbs some of the light while a large portion of the light is diffusely scattered within the sample. Scattering disperses the light in all directions. A fraction of the deeply penetrating scattered light exits the sample and may be detected in an imaging fashion using wavelength selection and an optical imaging system. The method extends the dynamic range of the optical imager by extracting additional information from the detected light that is used to provide reconstructed contrast of smaller concentrations of chromophores. The light detected from tissue contains unique spectral information related to various components of the tissue. Using a reiterative calibration method, the acquired spectra and images are analyzed and displayed in near real time in such a manner as to characterize functional and structural information of the target tissue.
Owner:APOGEE BIODIMENSIONS

Light diffusion film, surface illuminant device and liquid crystal display device

A transmissive display apparatus 21 comprises a liquid crystal display unit 22 and a plane light source unit 23. The unit 23 comprises a tubular light source 24, a light guide 25 having a wedge-shaped reflecting groove formed at the bottom thereof, and a light-diffusing film 27 having anisotropy and/or ultraviolet (UV) absorbability. In the film, a light-scattering characteristic F(theta) representing the relationship between the light-scattering angle theta and a scattered light intensity F fulfills Fy(theta)/Fx(theta)>=1.01 over a range of theta=4 to 30°, wherein Fx(theta) and Fy(theta) represent the light-scattering characteristics in the X-axial direction and the Y-axial direction of the film, respectively. The film comprises a light-diffusing layer composed of a plurality of resins which are different from each other in refractive index, and a transparent layer laminated on at least one side thereof. The transparent layer at least may contain a UV absorber. Such a light-diffusing film ensures simplification of structures of a plane light source device and a liquid crystal display apparatus. When the film has anisotropy, the luminance in the display surface can be uniformized. A UV absorbable light-diffusing film absorbs UV from a light source (fluorescent tube) of the plane light source device (backlight), and can prevent deterioration of a prism sheet and a liquid crystal display cell.
Owner:DAICEL CHEM IND LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products