Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

771 results about "Infrared wavelength" patented technology

Infrared radiation (IR), sometimes referred to simply as infrared, is a region of the electromagnetic radiation spectrum where wavelengths range from about 700 nanometers (nm) to 1 millimeter (mm).

Smart recognition apparatus and method

A qualifying connection for an instrument attaches to a source of electrosurgery energy to and the instrument and has first and second parts coupled to the instrument and the source, respectively. Optical couplings on the connection transmit invisible energy to identify the instrument and are proximate on the first and second parts. A light modifier on the first part is proximal to the second part for modification of radiation in the infrared wavelengths so infrared transmitters encode signals and non contact coded proximity detectors on the second part are the coupled detectors. Non contact coded proximity detectors respond to modified infrared light establishing an Nth bit identification code. An infrared light supply in the source pass from the transmitters across the communicating couplings for encoding signals by modification of the infrared light with a light modifier. Mechanical attachments include conjugating male and female portions physically extending between the parts for mating engagement. The attachments juxtaposition the parts when the attachments geometrically conjugate to geographically positioning the couplings proximate for communicating. The attachments have one or more conductors for delivery of high frequency energy from the source to the instrument. A cable fits between the first part of the connection and the instrument and has electrical conductors for carrying energy passing through the first part of the connection from the source to the instrument. An identifying circuit couples to the second part and responds to invisible light optically communicated across the couplings for verifying the type of instrument connected by the cable to the source.
Owner:COVIDIEN AG

Smart recognition apparatus and method

InactiveUS7044949B2Avoid problemsTight optical and mechanical toleranceDiagnosticsClose-range type systemsProximateElectrosurgery
A qualifying connection for an instrument attaches to a source of electrosurgery energy and to the instrument and has first and second parts coupled to the instrument and the source, respectively. Optical couplings on the connection transmit invisible energy to identify the instrument and are proximate on the first and second parts. A light modifier on the first part is proximal to the second part for modification of radiation in the infrared wavelengths so infrared transmitters encode signals and non-contact coded proximity detectors on the second part are the coupled detectors. Mechanical attachments include conjugating male and female portions which physically extend between the parts and matingly engage. An identifying circuit couples to the second part and responds to invisible light optically communicated across the couplings for verifying the type of instrument connected by the cable to the source. A method of using the connection has steps including juxtaposing and conjugating the parts with attachments and couplings for transmitting invisible optical energy to identify the instrument. The method includes modifying the invisible optical energy with geographically disposed proximate couplings of the parts when the attachments engage and the couplings are proximate. Passing and assessing signals of the modified energy are transmitted through the connection and to an identifying circuit in the source.
Owner:COVIDIEN AG

Method and apparatus for high power optical amplification in the infrared wavelength range (0.7-20 mum)

InactiveUS20050271094A1Laser detailsNon-linear opticsAcousto-optic programmable dispersive filterAdemetionine
A novel method for high power optical amplification of ultrashort pulses in IR wavelength range (0.7-20 Ãm) is disclosed. The method is based on the optical parametric chirp pulse amplification (OPCPA) technique where a picosecond or nanosecond mode locked laser system synchronized to a signal laser oscillator is used as a pump source or alternatively the pump pulse is created from the signal pulse by using certain types of optical nonlinear processes described later in the document. This significantly increases stability, extraction efficiency and bandwidth of the amplified signal pulse. Further, we disclose five new practical methods of shaping the temporal and spatial profiles of the signal and pump pulses in the OPCPA interaction which significantly increases its efficiency. In the first, passive preshaping of the pump pulses has been made by a three wave mixing process separate from the one occurring in the OPCPA. In the second, passive pre-shaping of the pump pulses has been made by spectral filtering in the pump mode-locked laser or in its amplifier. In the third, the temporal shape of the signal pulse optimized for OPCPA interaction has been actively processed by using an acousto-optic programmable dispersive filter (Dazzler) or liquid crystal light modulators. In the fourth alternative method, the signal pulse intensity envelope is optimized by using passive spectral filtering. Finally, we disclose a method of using pump pulses which interact with the seed pulses with different time delays and different angular orientations allowing the amplification bandwidth to be increased. In addition we describe a new technique for high power IR optical beam delivery systems based on the microstructure fibres made of silica, fluoride or chalcogenide glasses as well as ceramics. Also we disclose a new optical system for achieving phase matching geometries in the optical parametric interactions based on diffractive optics. All novel methods of the ultrashort optical pulse amplification described in this disclosure can be easily generalized to other wavelength ranges.
Owner:MILLER ROBERT JOHN DWAYNE +3
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products