Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

17329 results about "Time delays" patented technology

Time delay(Noun) A delay used to separate the occurrence of two events, especially in a mechanical or electronic device.

True time delay phase array radar using rotary clocks and electronic delay lines

Local oscillator circuitry for an antenna array is disclosed. The circuitry includes an array of rotary traveling wave oscillators which are arranged in a pattern over an area and coupled so as to make them coherent. This provides for a set of phase synchronous local oscillators distributed over a large area. The array also includes a plurality of phase shifters each of which is connected to one of the rotary oscillators to provide a phase shifted local oscillator for the array. The phase shifter optionally includes a cycle counter that is configured to count cycles of the rotary oscillator to which it is connected and control circuitry that is then operative to provide a shifted rotary oscillator output based on the count from the cycle counter. A system and method for operating a true-time delay phased array antenna system. The system includes a plurality of antenna element circuits for driving or receiving an rf signal from the elements of the array. Each element circuit has a transmit and a receive path and a local multiphase oscillator, such as a rotary traveling wave oscillator. Each path has an analog delay line for providing a true-time delay for the antenna element. Preferably, the analog delay line is a charge coupled device whose control nodes are connected to phases of the local multiphase oscillator to implement a delay that is an integer number local multiphase oscillator periods. A fractional delay is also included in the path by using a sample and hold circuit connected to a particular phase of the oscillator. By delaying each antenna element by a true time delay, broadband operation of the array is possible.
Owner:ANALOG DEVICES INC

LTE and WLAN interconnecting system and switching method

InactiveCN101841880AMeet business quality requirementsReduce latencyWireless communicationTime delaysCoupling
The invention provides an LTE and WLAN interconnecting system and a switching method; and the system introduces the entity of a virtual base station under an LTE architecture, and accesses the entity into the interface of the LTE as WLAN. On the LTE side, the virtual base station remains transparent relative to the LTE side, and is provided with the functions of a general LTE base station. On the WLAN side, the virtual base station can control the WLAN access point. The switching between the LTE and the WLAN is realized through the virtual base station through a standard X2 interface. A second layer tunneling protocol or an Ethernet tunneling protocol is adopted between the virtual base station and the WLAN access point to realize the transmission and the receiving of data and signaling during the switching process, and the WLAN serves as the bottom layered transmission channel of the data and the signaling of an LTE system. The method has the advantage that for the LTE, the switching process is kept consistent with the LTE switching process, which has very small impact on the traditional LTE. The WLAN is connected with the LTE in a tight coupling way, thereby greatly meeting the business requirement requirements, reducing the time delay caused by system switching, and ensuring the system performance.
Owner:HUAZHONG UNIV OF SCI & TECH

System and method for distance measurement by inphase and quadrature signals in a radio system

A system and a method for distance measurement utilizes a radio system. The distance is measured by determining the time it takes a pulse train to travel from a first radio transceiver to a second radio transceiver and then from the second radio transceiver back to the first radio transceiver. The actual measurement is a two step process. In the first step, the distance is measured in coarse resolution, and in the second step, the distance is measured in fine resolution. A first pulse train is transmitted using a transmit time base from the first radio transceiver. The first pulse train is received at a second radio transceiver. The second radio transceiver synchronizes its time base with the first pulse train before transmitting a second pulse train back to the first radio transceiver, which then synchronizes a receive time base with the second pulse train. The time delay between the transmit time base and the receive time base can then be determined. The time delay indicates the total time of flight of the first and second pulse trains. The time delay comprises coarse and fine distance attributes. The coarse distance between the first and second radio transceivers is determined. The coarse distance represents the distance between the first and second radio transceivers in coarse resolution. An in phase (I) signal and a quadrature (Q) signal are produced from the time delay to determine the fine distance attribute. The fine distance indicates the distance between the first and second transceivers in fine resolution. The distance between the first and second radio transceivers is then determined from the coarse distance and the fine distance attributes.
Owner:HUMATICS CORP

Flow rate measurement for industrial sensing applications using unsteady pressures

Flow rate measurement system includes two measurement regions 14,16 located an average axial distance ΔX apart along the pipe 12, the first measurement region 14 having two unsteady pressure sensors 18,20, located a distance X1 apart, and the second measurement region 16, having two other unsteady pressure sensors 22,24, located a distance X2 apart, each capable of measuring the unsteady pressure in the pipe 12. Signals from each pair of pressure sensors 18,20 and 22,24 are differenced by summers 44,54, respectively, to form spatial wavelength filters 33,35, respectively. Each spatial filter 33,35 filters out acoustic pressure disturbances Pacoustic and other long wavelength pressure disturbances in the pipe 12 and passes short-wavelength low-frequency vortical pressure disturbances Pvortical associated with the vortical flow field 15. The spatial filters 33,35 provide signals Pas1,Pas2 to band pass filters 46,56 that filter out high frequency signals. The Pvortical -dominated filtered signals Pasf1,Pasf2 from the two regions 14,16 are cross-correlated by Cross-Correlation Logic 50 to determine a time delay τ between the two sensing locations 14,16 which is divided into the distance ΔX to obtain a convection velocity Uc(t) that is related to an average flow rate of the fluid (i.e., one or more liquids and / or gases) flowing in the pipe 12. The invention may also be configured to detect the velocity of any desired inhomogeneous pressure field in the flow. The invention may also be combined with an instrument, an opto-electronic converter and a controller in an industrial process control system.
Owner:EXPRO METERS

Ultrawide-band communication system and method

An impulse radio communications system using one or more subcarriers to communicate information from an impulse radio transmitter to an impulse radio receiver. The impulse radio communication system is an ultrawide-band time domain system. The use of subcarriers provides impulse radio transmissions added channelization, smoothing and fidelity. Subcarriers of different frequencies or waveforms can be used to add channelization of impulse radio signals. Thus, an impulse radio link can communicate many independent channels simultaneously by employing different subcarriers for each channel. The impulse radio uses modulated subcarrier(s) for time positioning a periodic timing signal or a coded timing signal. Alternatively, the coded timing signal can be summed or mixed with the modulated subcarrier(s) and the resultant signal is used to time modulate the periodic timing signal. Direct digital modulation of data is another form of subcarrier modulation for impulse radio signals. Direct digital modulation can be used alone to time modulate the periodic timing signal or the direct digitally modulated the periodic timing signal can be further modulated with one or more modulated subcarrier signals. Linearization of a time modulator permits the impulse radio transmitter and receiver to generate time delays having the necessary accuracy for impulse radio communications.
Owner:TDC ACQUISITION HLDG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products