Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

11284 results about "Network packet" patented technology

A network packet is a formatted unit of data carried by a packet-switched network. A packet consists of control information and user data, which is also known as the payload. Control information provides data for delivering the payload, for example: source and destination network addresses, error detection codes, and sequencing information. Typically, control information is found in packet headers and trailers.

Multiple network protocol encoder/decoder and data processor

A multiple network protocol encoder/decoder comprising a network protocol layer, data handler, O.S. State machine, and memory manager state machines implemented at a hardware gate level. Network packets are received from a physical transport level mechanism by the network protocol layer state machine which decodes network protocols such as TCP, IP, User Datagram Protocol (UDP), PPP, and Raw Socket concurrently as each byte is received. Each protocol handler parses and strips header information immediately from the packet, requiring no intermediate memory. The resulting data are passed to the data handler which consists of data state machines that decode data formats such as email, graphics, Hypertext Transfer Protocol (HTTP), Java, and Hypertext Markup Language (HTML). Each data state machine reacts accordingly to the pertinent data, and any data that are required by more than one data state machine is provided to each state machine concurrently, and any data required more than once by a specific data state machine, are placed in a specific memory location with a pointer designating such data (thereby ensuring minimal memory usage). Resulting display data are immediately passed to a display controller. Any outgoing network packets are created by the data state machines and passed through the network protocol state machine which adds header information and forwards the resulting network packet via a transport level mechanism.
Owner:NVIDIA CORP

Method and apparatus for measuring stream availability, quality and performance

A streaming measurement agent designed to experience, measure, and report on a media stream as an actual end user would experience the stream. Preferably, agent resides transparently within a streaming media player itself so that it can monitor stream packet flows within the player as the measured streams are being played. In an illustrative embodiment, the agent comprises a performance monitoring module (PMM), which is software that resides in an interface between an existing core module and a renderer of a media player. The agent PMM intercepts each useful packet as it goes from the core to the renderer and, as a result, it is able to compute quality metrics about the playback. The agent functions “transparently” to the media player by presenting the core with an application programming interface (API) that emulates the API that the renderer normally presents to the core. Thus, when the core believes it is calling the renderer, it is actually calling the agent PMM, which can then receive all the packets from the core and process them. After computing relevant performance metrics using the packets it receives, the agent PMM calls the renderer. A set of performance agents can be managed by a service provider to enable a content provider to determine how a stream is perceived by end users.
Owner:AKAMAI TECH INC

Method and apparatus for remotely monitoring a site

The present invention is directed to providing systems and methods for remotely monitoring sites to provide real time information which can readily permit false alarms to be distinguished, and which can identify and track the precise location of an alarm. In exemplary embodiments, monitoring capabilities such as intrusion/fire detection and tracking capabilities, can be implemented through the use of multistate indicators in a novel interface which permits information to be transmitted using standard network protocols from a remote site to a monitoring station in real-time over preexisting communication networks, such as the Internet. A wireless network can also be established using browser encapsulated communication programs (for example, active X control, Java applets, and so forth) to transmit data packets which comply with any standard wireless local area network protocol. Communications can thereby be established between a web server embedded in a centrally located host monitoring station and a separate security panel deployed in each of the buildings to be remotely monitored. In exemplary embodiments, communications can be handed off from the centrally located host monitoring station to a mobile monitoring station (for example, to a laptop computer in a responding vehicle, such as a police or fire vehicle). The handoff can be such that direct communications are established between a security panel site being monitored and the laptop, or over, for example, a cellular network or indirect communications can be established via the host monitoring station.
Owner:NETTALON SECURITY SYST

Method and apparatus for routing data to a load balanced server using MPLS packet labels

A method of routing data to a load-balanced server through a network having one or more load-balancing nodes is disclosed. The first packet of a client request is received at one of the load-balancing nodes, which stores information identifying a flow associated with the packet and an incoming interface identifier. The node then makes a server load-balancing decision and stores an outgoing interface identifier. When the packet reaches the last load-balancing node before the selected server, that last node also requests an MPLS label to uniquely identify the flow, connection and route. The label is stored in a mapping at the last node that associates the label with the flow and interface identifying information. The packet is routed to the selected server. The first server response packet is switched hop-by-hop and the MPLS label is stored at each node traversed by the response packets, in association with a flow identifier and incoming and outgoing interface identifiers. For all other packets in the request and response, nodes fast-switch the packets based on the label mappings. As a result, packet flows are rapidly routed from the same client to the same server without time-consuming hop-by-hop routing decisions or repeated load-balancing decisions.
Owner:CISCO TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products